Leveraging the 4th Industrial Revolution Technology for Sustainable Development of the Northern Sea Route (NSR)—The Case Study of Autonomous Vessel

The Fourth Industrial Revolution (4IR) technology has been applied to various industrial areas not only to improve economic efficiency but also to obtain environmental and safety benefits. We paid attention to the unresolved issues of Arctic development to establish a balance between economic feasib...

Full description

Bibliographic Details
Published in:Sustainability
Main Authors: Sung-Woo Lee, Jisung Jo, Sewon Kim
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
NSR
4IR
geo
Online Access:https://doi.org/10.3390/su13158211
https://doaj.org/article/58844df05c9043aa877a37b89c39a82f
Description
Summary:The Fourth Industrial Revolution (4IR) technology has been applied to various industrial areas not only to improve economic efficiency but also to obtain environmental and safety benefits. We paid attention to the unresolved issues of Arctic development to establish a balance between economic feasibility and social values and suggest the 4IR technologies as the solution for this. The master concept of application of the 4IR technology to NSR sailing is presented. Further, we conducted a case study for autonomous vessels. A cost breakdown structure model is specified to compare the total costs of traditional and autonomous vessels. Then, we conducted scenario analysis to investigate the economic and social effects of autonomous vessels by season and route. The results show that autonomous vessels have economic benefits compared to the traditional vessel even in the winter season, and if we realize autonomous vessels in the NSR, there are more cost saving effects than in the Suez Canal Route (SCR) in any season. As for the environmental benefits, autonomous vessels have lower gas emissions and reduced water disposal compared to the traditional vessel. Further, autonomous vessels could be a solution to provide a better crew working environment by minimizing the number of people on board. The contribution of this research is that, first, we utilize real fuel oil consumption measurement data to estimate the voyage expenses, and, second, this is a novel attempt of applying the 4IR technology as a solution for the Arctic development issue. In this respect, this research is expected to serve as a cornerstone for future research, and it will help to establish Arctic development strategies in Arctic or non-Arctic countries.