Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site

The Müller Ice Cap will soon set the scene for a new drilling project. Therefore, ice thickness estimates are necessary for planning, since thickness measurements of the ice cap are sparse. Here, three models are presented and compared: (i) a simple Semi-Empirical Ice Thickness Model (SEITMo) based...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: A.-S. P. Zinck, A. Grinsted
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-16-1399-2022
https://tc.copernicus.org/articles/16/1399/2022/tc-16-1399-2022.pdf
https://doaj.org/article/45ce19a7d2d743b7951fcdeefc84f9de
Description
Summary:The Müller Ice Cap will soon set the scene for a new drilling project. Therefore, ice thickness estimates are necessary for planning, since thickness measurements of the ice cap are sparse. Here, three models are presented and compared: (i) a simple Semi-Empirical Ice Thickness Model (SEITMo) based on an inversion of the shallow-ice approximation by the use of a single radar line in combination with the glacier outline, surface slope, and elevation; (ii) an iterative inverse method using the Parallel Ice Sheet Model (PISM), and (iii) a velocity-based inversion of the shallow-ice approximation. The velocity-based inversion underestimates the ice thickness at the ice cap top, making the model less useful to aid in drill site selection, whereas PISM and the SEITMo mostly agree about a good drill site candidate. However, the new SEITMo is insensitive to mass balance, computationally fast, and provides as good fits as PISM.