Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method t...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: S. Yang, Y. Shi
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-9-1983-2015
http://www.the-cryosphere.net/9/1983/2015/tc-9-1983-2015.pdf
https://doaj.org/article/3fe70d30d98d4cba9f8b7ebd0dad54ac
Description
Summary:Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice–water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.