Inconsistency in precipitation measurements across the Alaska–Yukon border

This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (National Weather Service (NWS) 8 in. gauge and Nipher gauge) and the bias-corrected data to account for wind...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: L. Scaff, D. Yang, Y. Li, E. Mekis
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-9-2417-2015
http://www.the-cryosphere.net/9/2417/2015/tc-9-2417-2015.pdf
https://doaj.org/article/2d1f8a2db4374cd28a84e289c28a82b7
Description
Summary:This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (National Weather Service (NWS) 8 in. gauge and Nipher gauge) and the bias-corrected data to account for wind effect on the gauge catch, wetting loss and trace events. The bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. Monthly corrections increase solid precipitation by 136 % in January and 20 % for July at the Barter Island in Alaska, and about 31 % for January and 4 % for July at the Yukon stations. Regression analyses of the monthly precipitation data show a stronger correlation for the warm months (mainly rainfall) than for cold month (mainly snowfall) between the station pairs, and small changes in the precipitation relationship due to the bias corrections. Double mass curves also indicate changes in the cumulative precipitation over the study periods. This change leads to a smaller and inverted precipitation gradient across the border, representing a significant modification in the precipitation pattern over the northern region. Overall, this study discovers significant inconsistency in the precipitation measurements across the USA–Canada border. This discontinuity is greater for snowfall than for rainfall, as gauge snowfall observations have large errors in windy and cold conditions. This result will certainly impact regional, particularly cross-border, climate and hydrology investigations.