Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception

We present downcore records of redox-sensitive authigenic uranium (U) and manganese (Mn) concentrations based on five marine sediment cores spanning a meridional transect encompassing the Subantarctic and Antarctic zones in the southwestern Indian Ocean covering the last glacial cycle. These records...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: H. E. Amsler, L. M. Thöle, I. Stimac, W. Geibert, M. Ikehara, G. Kuhn, O. Esper, S. L. Jaccard
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
geo
Online Access:https://doi.org/10.5194/cp-18-1797-2022
https://cp.copernicus.org/articles/18/1797/2022/cp-18-1797-2022.pdf
https://doaj.org/article/21e2874b937e499f98367b2a54135a20
Description
Summary:We present downcore records of redox-sensitive authigenic uranium (U) and manganese (Mn) concentrations based on five marine sediment cores spanning a meridional transect encompassing the Subantarctic and Antarctic zones in the southwestern Indian Ocean covering the last glacial cycle. These records signal lower bottom water oxygenation during glacial climate intervals and generally higher oxygenation during warm periods, consistent with climate-related changes in deep-ocean remineralized carbon storage. Regional changes in the export of siliceous phytoplankton to the deep sea may have entailed a secondary influence on oxygen levels at the water–sediment interface, especially in the Subantarctic Zone. The rapid reoxygenation during the deglaciation is in line with increased ventilation and enhanced upwelling after the Last Glacial Maximum (LGM), which in combination conspired to transfer previously sequestered remineralized carbon to the surface ocean and the atmosphere, contributing to propel the Earth's climate out of the last ice age. These records highlight the still insufficiently documented role that the Southern Indian Ocean played in the air–sea partitioning of CO2 on glacial–interglacial timescales.