Greenland Ice Sheet solid ice discharge from 1986 through 2017

We present a 1986 through 2017 estimate of Greenland Ice Sheet ice discharge. Our data include all discharging ice that flows faster than 100 m yr−1 and are generated through an automatic and adaptable method, as opposed to conventional hand-picked gates. We position gates near the present-year term...

Full description

Bibliographic Details
Published in:Earth System Science Data
Main Authors: K. D. Mankoff, W. Colgan, A. Solgaard, N. B. Karlsson, A. P. Ahlstrøm, D. van As, J. E. Box, S. A. Khan, K. K. Kjeldsen, J. Mouginot, R. S. Fausto
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
geo
Online Access:https://doi.org/10.5194/essd-11-769-2019
https://www.earth-syst-sci-data.net/11/769/2019/essd-11-769-2019.pdf
https://doaj.org/article/1620fcfe5c504ed9b8a1a4311a9de1ec
Description
Summary:We present a 1986 through 2017 estimate of Greenland Ice Sheet ice discharge. Our data include all discharging ice that flows faster than 100 m yr−1 and are generated through an automatic and adaptable method, as opposed to conventional hand-picked gates. We position gates near the present-year termini and estimate problematic bed topography (ice thickness) values where necessary. In addition to using annual time-varying ice thickness, our time series uses velocity maps that begin with sparse spatial and temporal coverage and end with near-complete spatial coverage and 6 d updates to velocity. The 2010 through 2017 average ice discharge through the flux gates is ∼488±49 Gt yr−1. The 10 % uncertainty stems primarily from uncertain ice bed location (ice thickness). We attribute the ∼50 Gt yr−1 differences among our results and previous studies to our use of updated bed topography from BedMachine v3. Discharge is approximately steady from 1986 to 2000, increases sharply from 2000 to 2005, and then is approximately steady again. However, regional and glacier variability is more pronounced, with recent decreases at most major glaciers and in all but one region offset by increases in the NW (northwestern) region. As part of the journal's living archive option, all input data, code, and results from this study will be updated when new input data are accessible and made freely available at https://doi.org/10.22008/promice/data/ice_discharge.