Clumped-isotope-derived climate trends leading up to the end-Cretaceous mass extinction in northwestern Europe

Paleotemperature reconstructions of the end-Cretaceous interval document local and global climate trends, some driven by greenhouse gas emissions from Deccan Traps volcanism and associated feedbacks. Here, we present a new clumped-isotope-based paleotemperature record derived from fossil bivalves fr...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: H. E. O'Hora, S. V. Petersen, J. Vellekoop, M. M. Jones, S. R. Scholz
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
geo
Online Access:https://doi.org/10.5194/cp-18-1963-2022
https://cp.copernicus.org/articles/18/1963/2022/cp-18-1963-2022.pdf
https://doaj.org/article/034e5c704e7941e4996472a3d9b09de6
Description
Summary:Paleotemperature reconstructions of the end-Cretaceous interval document local and global climate trends, some driven by greenhouse gas emissions from Deccan Traps volcanism and associated feedbacks. Here, we present a new clumped-isotope-based paleotemperature record derived from fossil bivalves from the Maastrichtian type region in southeastern Netherlands and northeastern Belgium. Clumped isotope data document a mean temperature of 20.4±3.8 ∘C, consistent with other Maastrichtian temperature estimates, and an average seawater δ18O value of 0.2±0.8 ‰ VSMOW for the region during the latest Cretaceous (67.1–66.0 Ma). A notable temperature increase at ∼66.4 Ma is interpreted to be a regional manifestation of the globally defined Late Maastrichtian Warming Event, linking Deccan Traps volcanic CO2 emissions to climate change in the Maastricht region. Fluctuating seawater δ18O values coinciding with temperature changes suggest alternating influences of warm, salty southern-sourced waters and cooler, fresher northern-sourced waters from the Arctic Ocean. This new paleotemperature record contributes to the understanding of regional and global climate response to large-scale volcanism and ocean circulation changes leading up to a catastrophic mass extinction.