Impact de la concentration en peptides d'un hydrolysat de crabe des neiges sur leur séparation et leur sélectivité en cours d'electrodyalyse avec membrane d'ultrafiltration (EDUF)

The importance of functional and nutraceutical products has grown tremendously due to their added value. Their production requires the isolation and concentration of compounds, such as amino acids and bioactive peptides from protein hydrolysates. Therefore, a new separation technique EDUF (electrodi...

Full description

Bibliographic Details
Main Author: Koumfieg Noudou, Victoire Yolande
Other Authors: Amiot, Jean, Bazinet, Laurent
Format: Thesis
Language:French
Published: Université Laval 2017
Subjects:
Online Access:https://hdl.handle.net/20.500.11794/27613
Description
Summary:The importance of functional and nutraceutical products has grown tremendously due to their added value. Their production requires the isolation and concentration of compounds, such as amino acids and bioactive peptides from protein hydrolysates. Therefore, a new separation technique EDUF (electrodialysis with ultrafiltration) was used. To optimize the process, important parameters such as electric field strength, membrane material and molecular weight cut-off, pH, ionic strength and flow rate of the solutions as well as cell configuration have already been studied, except for the initial peptide concentration in the feed solution. The objective of this study was to determine the impact of peptides concentration of snow crab by-product hydrolysate on selectivity and separation rate of anionic and cationic peptides, and on their antimicrobial activity. To assess the impact of peptides concentration, four values of protein concentrations (0.5%; 1%; 2% and 4%) were studied with other parameters (pH, conductivity, potential difference) of the system kept constant. The results showed that increasing the peptides concentration has an effect on separation rate of the peptides. The highest rate was observed at 4% with 291.9 mg/mL and 431.87 mg/mL peptide concentration, respectively for the anionic and cationic compartment. Other results also showed that increasing the initial concentration has no effect on selectivity. The migration rate increased linearly with increasing feed solution concentration while the relative energy consumption decreased with increasing feed solution concentration. The highest migration rates of 16.2 g/m2.h and 7.8 g/m2.h for the cationic and anionic compartments respectively were observed at 4%, with relative energy consumption of 3.53 Wh/g. However, increasing the concentration had no effect on the fouling and membrane integrity. In terms of antimicrobial activity, different fractions (anionic and cationic) and the initial hydrolysate were tested and did not showed antimicrobial activity on ...