Data from: Variation in thermal stress response in two populations of the brown seaweed, Fucus distichus, from the Arctic and subarctic intertidal

It is unclear whether intertidal organisms are ‘preadapted’ to cope with the increase of temperature and temperature variability or if they are currently at their thermal tolerance limits. To address the dichotomy, we focused on an important ecosystem engineer of the Arctic intertidal rocky shores,...

Full description

Bibliographic Details
Main Authors: Smolina, Irina, Kollias, Spyros, Jueterbock, Alexander, Coyer, James A., Hoarau, Galice
Format: Dataset
Language:unknown
Published: Data Archiving and Networked Services (DANS) 2020
Subjects:
Online Access:https://doi.org/10.5061/dryad.t1tk4
Description
Summary:It is unclear whether intertidal organisms are ‘preadapted’ to cope with the increase of temperature and temperature variability or if they are currently at their thermal tolerance limits. To address the dichotomy, we focused on an important ecosystem engineer of the Arctic intertidal rocky shores, the seaweed Fucus distichus and investigated thermal stress responses of two populations from different temperature regimes (Svalbard and Kirkenes, Norway). Thermal stress responses at 20°C, 24°C and 28°C were assessed by measuring photosynthetic performance and expression of heat shock protein (HSP) genes (shsp, hsp90 and hsp70). We detected population-specific responses between the two populations of F. distichus, as the Svalbard population revealed a smaller decrease in photosynthesis performance but a greater activation of molecular defence mechanisms (indicated by a wider repertoire of HSP genes and their stronger upregulation) compared with the Kirkenes population. Although the temperatures used in our study exceed temperatures encountered by F. distichus at the study sites, we believe response to these temperatures may serve as a proxy for the species’ potential to respond to climate-related stresses. Stress measurements in F.distichusThe file contains two tables with (1) photosynthetic performance (PI_abs and Fv/Fm) and (2) gene expression (3 hsp genes) of F. distichus individuals from two populations (Svalbard and Kirkenes) during thermal stress experiments. Experiments were performed at 20˚C, 24˚C and 28˚C with measurements taken at 0 min (control), 15 min of stress, 60 min of stress and 24 hours of recovery.2015-08-Fd_DATA.xls