Data from: Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’ effects

Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of indi...

Full description

Bibliographic Details
Main Authors: Waring, Bonnie G., Álvarez-Cansino, Leonor, Barry, Kathryn E., Becklund, Kristen K., Dale, Sarah, Gei, Maria G., Keller, Adrienne B., Lopez, Omar R., Markesteijn, Lars, Mangan, Scott, Riggs, Charlotte E., Rodríguez-Ronderos, Maria Elizabeth, Segnitz, R. Max, Schnitzer, Stefan A., Powers, Jennifer S.
Format: Dataset
Language:unknown
Published: Dryad 2020
Subjects:
geo
Online Access:https://doi.org/10.5061/dryad.15kb3
Description
Summary:Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of individual plants on their local environments (individual plant effects). Here, we synthesize this work using meta-analysis to show that plant effects are strong and pervasive across ecosystems on six continents. Overall, soil properties beneath individual plants differ from those of neighbours by an average of 41%. Although the magnitudes of individual plant effects exhibit weak relationships with climate and latitude, they are significantly stronger in deserts and tundra than forests, and weaker in intensively managed ecosystems. The ubiquitous effects of plant individuals and species on local soil properties imply that individual plant effects have a role in plant–soil feedbacks, linking individual plants with biogeochemical processes at the ecosystem scale. Zinke effect sizes and covariatesDataset used for meta-analysisZinke effect sizes for Dryad.xlsBibliographic informationList of references included in meta-analysisBibliographic info.docx