Data from: Sex reversal and primary sex ratios in the common frog (Rana temporaria)

Sex reversal has been suggested to have profound implications for the evolution of sex chromosomes and population dynamics in ectotherms. Occasional sex reversal of genetic males has been hypothesized to prevent the evolutionary decay of nonrecombining Y chromosomes caused by the accumulation of del...

Full description

Bibliographic Details
Main Authors: Alho, Jussi S, Chikako, Matsuba, Merilä, Juha
Format: Dataset
Language:English
Published: Dryad 2010
Subjects:
psy
Online Access:https://doi.org/10.5061/dryad.8111
Description
Summary:Sex reversal has been suggested to have profound implications for the evolution of sex chromosomes and population dynamics in ectotherms. Occasional sex reversal of genetic males has been hypothesized to prevent the evolutionary decay of nonrecombining Y chromosomes caused by the accumulation of deleterious mutations. At the same time, sex reversals can have a negative effect on population growth rate. Here, we studied phenotypic and genotypic sex in the common frog (Rana temporaria) in a subarctic environment, where strongly female-biased sex ratios have raised the possibility of frequent sex reversals. We developed two novel sex-linked microsatellite markers for the species and used them with a third, existing marker and a Bayesian modelling approach to study the occurrence of sex reversal and to determine primary sex ratios in egg clutches. Our results show that a significant proportion (0.09, 95% credible interval: 0.04–0.18) of adults that were genetically female expressed the male phenotype, but there was no evidence of sex reversal of genetic males that is required for counteracting the degeneration of Y chromosome. The primary sex ratios were mostly equal, but three clutches consisted only of genetic females and three others had a significant female bias. Reproduction of the sex-reversed genetic females appears to create all-female clutches potentially skewing the population level adult sex-ratio consistent with field observations. However, based on a simulation model, such a bias is expected to be small and transient and thus does not fully explain the observed female-bias in the field. Dryad sheet1. Adult: Genotype data of adult common frogs (Rana temporaria) in Kilpisjarvi Finland, using three microsatellite loci (RtSB03, BFG201, BFG266). 2. Tadpole: Genotype of tadpoles (Rana temporaria) in Kilpisjarvi Finland, using three microsatellite loci (RtSB03, BFG201, BFG266).