Data from: High suckling rates and acoustic crypsis of humpback whale neonates maximise potential for mother–calf energy transfer

Readme file for the DTG filesDtag files mn238mn238.zipDtag files mn238bmn238b.zipDtag files mn239amn239a.zipDtag files mn239bmn239b.zipDtag files mn241amn241a.zipDtag files mn242amn242a.zipDtag files mn243amn243a.zipDtag files mn246bmn246b.zipDtag files mn247amn247a.zipDtag files mn247bmn247b.zip 1....

Full description

Bibliographic Details
Main Authors: Videsen, Simone K. A., Bejder, Lars, Johnson, Mark, Madsen, Peter T.
Format: Dataset
Language:unknown
Published: 2021
Subjects:
Online Access:https://doi.org/10.5061/dryad.m8j17
Description
Summary:Readme file for the DTG filesDtag files mn238mn238.zipDtag files mn238bmn238b.zipDtag files mn239amn239a.zipDtag files mn239bmn239b.zipDtag files mn241amn241a.zipDtag files mn242amn242a.zipDtag files mn243amn243a.zipDtag files mn246bmn246b.zipDtag files mn247amn247a.zipDtag files mn247bmn247b.zip 1. The migration of humpback whales to and from their breeding grounds results in a short, critical time period during which neonatal calves must acquire sufficient energy via suckling from their fasting mothers to survive the long return journey. 2. Understanding neonate suckling behaviour is critical for understanding the energetics and evolution of humpback whale migratory behaviour and for informing conservation efforts, but despite its importance, very little is known about the details, rate and behavioural context of this critical energy transfer. 3. To address this pertinent data gap on calf suckling behaviour, we deployed multi-sensor Dtags on eight humpback whale calves and two mothers allowing us to analyse detailed suckling and acoustic behaviour for a total of 68·8 h. 4. Suckling dives were performed 20·7 ± 7% of the total tagging time with the mothers either resting at the surface or at depth with the calves hanging motionless with roll and pitch angles close to zero. 5. Vocalisations between mother and calf, which included very weak tonal and grunting sounds, were produced more frequently during active dives than suckling dives, suggesting that mechanical stimuli rather than acoustic cues are used to initiate nursing. 6. Use of mechanical cues for initiating suckling and low level vocalisations with an active space of <100 m indicate a strong selection pressure for acoustic crypsis. 7. Such inconspicuous behaviour likely reduces the risk of exposure to eavesdropping predators and male humpback whale escorts that may disrupt the high proportion of time spent nursing and resting, and hence ultimately compromise calf fitness. 8. The small active space of the weak calls between mother and calf is very ...