Glaciers and ice caps through the Holocene: A pan–Arctic synthesis of lake–based reconstructions

The recent retreat of nearly all glaciers and ice caps (GICs) located in Arctic regions is one of the most clear and visible signs of ongoing climate change. This paper synthesizes published records of Holocene GIC fluctuations from lake archives, placing their recent retreat into a longer–term cont...

Full description

Bibliographic Details
Main Authors: Larocca, Laura J., Axford, Yarrow
Format: Text
Language:English
Published: 2021
Subjects:
geo
Online Access:https://doi.org/10.5194/cp-2021-95
https://cp.copernicus.org/preprints/cp-2021-95/
Description
Summary:The recent retreat of nearly all glaciers and ice caps (GICs) located in Arctic regions is one of the most clear and visible signs of ongoing climate change. This paper synthesizes published records of Holocene GIC fluctuations from lake archives, placing their recent retreat into a longer–term context. Our compilation includes sixty–six lake–based GIC records (plus one non–lake–based record from the Russian Arctic) from seven Arctic regions: Alaska; the archipelagos of the eastern Canadian Arctic; GICs peripheral to the Greenland Ice Sheet; Iceland; the Scandinavian peninsula; Svalbard; and the Russian high Arctic. For each region, and for the full Arctic, we summarize evidence for when GICs were smaller than today or absent altogether, indicating warmer than present summers, and evidence for when GICs regrew in lake catchments, indicating summer cooling. Consistent with orbitally driven high boreal summer insolation in the early Holocene, the pan–Arctic compilation suggests that the majority (50 % or more) of studied GICs were smaller than present or absent by ~10 ka. The regional compilations suggest even earlier GIC loss, and thus warmth, in the Russian Arctic and in Svalbard. We find the highest percentage (>90 %) of Arctic GICs smaller than present or absent in the middle Holocene ~7–6 ka, probably reflecting more spatially ubiquitous and consistent summer warmth during this period than in the early Holocene. Following this interval of widespread warmth, our compilation shows that GICs across the Arctic began to regrow, and summers began to cool by ~6 ka. Together, the pan–Arctic records also suggest two periods of enhanced GIC growth in the mid–to–late Holocene, from ~4.5–3 ka and after ~2 ka. The regional records show substantial variability in the timing of GIC regrowth within and between regions, suggesting that the Arctic did not cool synchronously despite the smooth and hemispherically symmetric decline in Northern Hemisphere summer insolation. In agreement with other studies, this implies a ...