Spatial variation of shell morphometrics in the subantarctic land snail Notodiscus hookeri from Crozet and Kerguelen Islands.

International audience The land snail Notodiscus hookeri, widely distributed in subantarctic islands, shows a large intraspecific variation in shell morphology. In the present work, shell size and form of individuals from populations located in Crozet and Kerguelen archipelagos were investigated by...

Full description

Bibliographic Details
Published in:Polar Biology
Main Authors: Madec, Luc, Bellido, Alain
Other Authors: Ecosystèmes, biodiversité, évolution Rennes (ECOBIO), Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2007
Subjects:
geo
Online Access:https://doi.org/10.1007/s00300-007-0318-7
https://hal.archives-ouvertes.fr/hal-00168125
Description
Summary:International audience The land snail Notodiscus hookeri, widely distributed in subantarctic islands, shows a large intraspecific variation in shell morphology. In the present work, shell size and form of individuals from populations located in Crozet and Kerguelen archipelagos were investigated by means of multivariate statistics. Variation in shell morphometrics was analysed after the partitioning of the overall variation into size and shape components by means of a principal component-based approach. Shell size shows a significant spatial heterogeneity, which seems essentially related to environmental pressures. Previous works pointed to a greater conchological variation between populations from Kerguelen but present observations show that intraisland variances are not significantly different in the two islands studied. Variation in shell shape splits the populations into two main entities because of different allometric relationships between two shell height components and all other measurements. However, using geographical affinities of populations as instrumental variables shows that more complex environmental features interfered in population clustering.