Summary: | This work addresses the integrated biorefining concept (extraction, fractionation, separation of compounds from biomass prior to further transformation) by developing discrete units with the ultimate objective of coupling them to enable a continuous flow configuration. Due to the complexity of solid, there is a need for a sustainable and environmentally friendly pre-treatment technology. Sub-critical water has been used as a solvent for extracting natural compounds in addition to hydrolysis. This work investigated the hydrolysis of carbohydrates (rice bran) and triacylglycerols (TAG; sunflower oil) chosen as models. The attribute of subcritical water (ion product and dielectric constant) in continuous flow reactors built for the purpose, allowed almost quantitative hydrolysis of hemicellulose and TAG. The effect of adding CO2 and therefore carbonic acid was positive on the hydrolysis of hemicellulose. Further, free fatty acids were transformed to ethyl esters using lipase within continuous flow super critical CO2 resulting in 95% yield. The hydrolysis and esterification reaction kinetics were studied. To address the complex interplay between multiple processing parameters response surface methodologies (RSM) were developed. Using the empirical data the models were successfully validated, therefore showing the utility of the RSM to assist process development. The important question of solubility of extractible in subcritical water was also addressed, through the development of a prediction method, validated with experimental data. In summary this work shows the possibility of applying the innovative Integrated Biorefining concept under continuous flow conditions -instead of the current application under batch conditions- for producing valuable compounds. La thèse vise l'application du concept de bioraffinerie (extraction, fractionnement, séparation de composés à partir de biomasse avant transformation ultérieure), via le développement d'étapes de production destinées à être associées en un procédé continu. La ...
|