Local and regional controls on Holocene sea ice dynamics and oceanography in Nares Strait, Northwest Greenland

International audience Nares Strait is one of three channels that connect the Arctic Ocean to Baffin Bay. Unique sea-ice conditions in the strait lead to the formation of landfast ice arches at its northern and southern ends. These ice arches regulate Arctic sea-ice and freshwater export through the...

Full description

Bibliographic Details
Published in:Marine Geology
Main Authors: Georgiadis, Eleanor, Giraudeau, Jacques, Jennings, Anne, Limoges, Audrey, Jackson, Rebecca, Ribeiro, Sofia, Massé, Guillaume
Other Authors: Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, University of New Brunswick (UNB), Geological Survey of Denmark and Greenland (GEUS), Takuvik International Research Laboratory, Université Laval Québec (ULaval)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
geo
Online Access:https://doi.org/10.1016/j.margeo.2020.106115
https://hal.archives-ouvertes.fr/hal-02991666/file/Georgiadis-et-al_2020-1.pdf
https://hal.archives-ouvertes.fr/hal-02991666
Description
Summary:International audience Nares Strait is one of three channels that connect the Arctic Ocean to Baffin Bay. Unique sea-ice conditions in the strait lead to the formation of landfast ice arches at its northern and southern ends. These ice arches regulate Arctic sea-ice and freshwater export through the strait and promote the opening of the North Water polynya. The present study addresses the paucity of pre-satellite records of environmental conditions in the Nares Strait area, and aims at reconstructing Holocene sea-ice conditions and ocean circulation in the strait. The investigation is based on a marine sediment core strategically retrieved from under the current ice arch in Kane Basin to the south of Nares Strait, and provides a continuous record spanning the past ca 9 kyrs. We use benthic foraminiferal assemblages and sea-ice biomarkers to infer changes in Holocene ocean circulation and sea-ice conditions in Kane Basin. The establishment of the modern ocean circulation in Kane Basin is related to ice sheet retreat and postglacial rebound, while changes in sea-ice cover concur with major shifts in the Arctic Oscillation (AO). Our results suggest that sea-ice cover in Kane Basin was highly variable between ca 9.0 and 8.3 cal. ka BP, before increasing, probably in link with the 8.2 cold event and the opening of Nares Strait. A short period of minimum sea-ice cover and maximum Atlantic bottom water influence occurred between ca 8.1 and 7.5 cal. ka BP, when Kane Basin was deeper than for the remaining of the Holocene. As atmospheric temperatures dropped, sea-ice cover intensified in Kane Basin between ca 7.5 and 5.5 cal. ka BP, but strong winds under prevailing positive-like AO conditions likely prevented the formation of ice arches in Nares Strait. During this time, our micro-paleontological data show that Atlantic water was progressively excluded from Kane Basin by the postglacial isostatic rebound. Increasingly cooler atmospheric temperatures and a shift towards more negative phases of the AO may have promoted ...