Co-simulation of redundant and heterogeneous modelling scales for a phenomenological approach

There are usually two opposite points of view for the modelling of complex systems. First, microscopical models aim at reproducing precisely the behavior of each entity of the system. In general, their great number is a major obstacle both to simulate the model in a reasonable time and to identify g...

Full description

Bibliographic Details
Main Author: Le Yaouanq, Sébastien
Other Authors: Brest, Tisseau, Jacques
Format: Thesis
Language:French
Published: 2016
Subjects:
geo
Online Access:http://www.theses.fr/2016BRES0032/document
Description
Summary:There are usually two opposite points of view for the modelling of complex systems. First, microscopical models aim at reproducing precisely the behavior of each entity of the system. In general, their great number is a major obstacle both to simulate the model in a reasonable time and to identify global behaviors. By contrast, the phenomenological approach allows the construction of efficient models from a macroscopic point of view as a superposition of phenomena. A drawback is that we often have to set empirical parameters in these descriptive models. To respond to this problem, we want to make joint use of different levels of description and to use microscopical simulations to feed incomplete macroscopical models.We would then obtain enhanced descriptive simulations with the precision of microscopical models in this way. To this end, we propose a redundant multiscale architecture which is based on the co-simulation methodology in order to generalize the redundant multiscale approach. We suggest two specific co-simulation strategies to guide a macroscopical simulation.The first one consists in dynamically and explicitly estimating critical parameters of a macroscopical model thanks to a dedicated microscopical simulator The second one allows to implicitly determine a full set of dependant parameters on the basis of an output shared by the different levels of description. Then we apply our works to the effective problem of the design offshore structures for arctic conditions. We first describe the implementation of an ice-structure simulation tool by means of a phenomenological and multi-model approach. In a second phase, we show the benefits of our co-simulation strategies to improve the precision of hydrodynamics simulations on the one hand, and on the other to pilot a more macroscopical model for the purpose of fast prototyping. Deux points de vue sont souvent opposés dans le cadre de la modélisation des systèmes complexes.D’un côté, une modélisation microscopique cherche à reproduire précisément le ...