New insights on the role of organic speciation in the biogeochemical cycle of dissolved cobalt in the southeastern Atlantic and the Southern Ocean

International audience . The organic speciation of dissolved cobalt (DCo) was investigated in the subtropical region of the southeastern Atlantic, and in the Southern Ocean in the Antarctic Circumpolar Current (ACC) and the northern Weddell Gyre, between 34°25' S and 57°33' S along the Gre...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Bown, Johann, Boye, Marie, Nelson, David M
Other Authors: Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Brest (UBO)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
geo
Online Access:https://doi.org/10.5194/bg-9-2719-2012
https://hal.univ-brest.fr/hal-00733087/file/bg-9-2719-2012-1.pdf
https://hal.univ-brest.fr/hal-00733087
Description
Summary:International audience . The organic speciation of dissolved cobalt (DCo) was investigated in the subtropical region of the southeastern Atlantic, and in the Southern Ocean in the Antarctic Circumpolar Current (ACC) and the northern Weddell Gyre, between 34°25' S and 57°33' S along the Greenwich Meridian during the austral summer of 2008. The organic speciation of dissolved cobalt was determined by competing ligand exchange adsorptive cathodic stripping voltammetry (CLE-AdCSV) using nioxime as a competing ligand. The concentrations of the organic ligands (L) ranged between 26 and 73 pM, and the conditional stability constants (log K'CoL) of the organic complexes of Co between 17.9 and 20.1. Most dissolved cobalt was organically complexed in the water-column (60 to >99.9%). There were clear vertical and meridional patterns in the distribution of L and the organic speciation of DCo along the section. These patterns suggest a biological source of the organic ligands in the surface waters of the subtropical domain and northern subantarctic region, potentially driven by the cyanobacteria, and a removal of the organic Co by direct or indirect biological uptake. The highest L:DCo ratio (5.81 ± 1.07 pM pM−1) observed in these surface waters reflected the combined effects of ligand production and DCo consumption. As a result of these combined effects, the calculated concentrations of inorganic Co ([Co']) were very low in the subtropical and subantarctic surface waters, generally between 10−19 and 10−17 M. In intermediate and deep waters, the South African margins can be a source of organic ligands, as it was suggested to be for DCo (Bown et al., 2011), although a significant portion of DCo (up to 15%) can be stabilized and transported as inorganic species in those DCo-enriched water-masses. Contrastingly, the distribution of L does not suggest an intense biological production of L around the Antarctic Polar Front where a diatom bloom had recently occurred. Here [Co'] can be several orders of magnitude higher than ...