Regulation of Thyrotropin mRNA Expression in Red Drum, Sciaenops ocellatus

The role of thyroid-stimulating hormone (TSH) in the regulation of peripheral thyroid function in non-mammalian species is still poorly understood. Thyroxine (T₄), the principal hormone released from the thyroid gland in response to TSH stimulation, circulates with a robust daily rhythm in the sciae...

Full description

Bibliographic Details
Main Author: Jones, Richard Alan
Other Authors: MacKenzie, Duncan S., Jaques, John T., Gatlin III, Delbert M., Perkins, Brian D.
Format: Thesis
Language:English
Published: 2012
Subjects:
TSH
Online Access:https://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11859
Description
Summary:The role of thyroid-stimulating hormone (TSH) in the regulation of peripheral thyroid function in non-mammalian species is still poorly understood. Thyroxine (T₄), the principal hormone released from the thyroid gland in response to TSH stimulation, circulates with a robust daily rhythm in the sciaenid fish, red drum. Previous research has suggested that the red drum T₄ cycle is circadian in nature, driven by TSH secretion in the early photophase and inhibited by T₄ feedback in the early scotophase. To determine whether TSH is produced in a pattern consistent with driving this T₄ cycle, I developed quantitative real time RT-PCR (qPCR) techniques to quantify the daily cycle of expression of the pituitary TSH subunits GSU[alpha], and TSH[beta]. I found that pituitary TSH expression cycled inversely to, and 6-12 hours out of phase with, the T₄ cycle, consistent with the hypothesis that TSH secretion drives the T₄ cycle. To examine the potential role of deiodinases in negative feedback regulation of this TSH cycle, I also utilized qPCR to assess the pituitary expression patterns of the TH activating enzyme outer-ring deiodinase (Dio2) and the TH deactivating enzyme inner ring deiodinase (Dio3). Whereas Dio2 was not expressed with an obvious daily cycle, Dio3 was expressed in the pituitary mirroring the TSH cycle. These results are consistent with T₄ negative feedback on TSH and suggest that TH inactivation by pituitary cells is an important component of the negative feedback system. To further examine the TH regulation of this Dio3 cycle, I developed an immersion technique to administer physiological doses of T₃ and T₄ in vivo. Both hormones persist in static tank water for at least 40 hours. Immersion in 200ng/ml T₄ significantly increased both plasma T₄ and T₃ within physiological ranges above control at 4.5 hours. Immersion in 100ng/ml T₃ increased plasma T₃ within physiological ranges over control by 22 hours while significantly decreasing plasma T₄ below control, presumably through inhibition of TSH secretion. ...