Multiobjective and Level Set Methods for Reservoir Characterization and Optimization

Proper management of oil and gas reservoirs as dynamic systems reduces operational expenditures, alleviates uncertainty, and increases hydrocarbon recovery. In this dissertation, we focus on two issues in reservoir management: multiobjective integration and channelized reservoir calibration. Multipl...

Full description

Bibliographic Details
Main Author: Han, Jichao
Other Authors: Datta-Gupta, Akhil, King, Michael, Gildin, Eduardo, Efendiev, Yalchin
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/1969.1/157139
Description
Summary:Proper management of oil and gas reservoirs as dynamic systems reduces operational expenditures, alleviates uncertainty, and increases hydrocarbon recovery. In this dissertation, we focus on two issues in reservoir management: multiobjective integration and channelized reservoir calibration. Multiple objectives, including bottom-hole pressure (BHP), water cut, and 4-D seismic data, are utilized in model ranking, history matching, and production optimization. These objectives may conflict, as they represent characteristics coming from different measurements and sources, and, significantly, of varying scales. A traditional weighted-sum method may reduce the solution space, often leading to loss of key information for each objective. Thus, how to integrate multiple objectives effectively becomes critical in reservoir management. This dissertation presents a Pareto-based approach to characterize multiobjective and potentially conflicting features and to capture geologic uncertainty, preserving the original objective space and avoiding weights determination as in the weight-sum method. For channelized reservoirs, identification of the channel geometry and facies boundaries, as well as characterization of channel petrophysical properties are critical for performance predictions. Traditional history matching methods, however, are unable to preserve the channel geometry. We propose a level set based method, integrated with seismic constraint and coupled with the Grid Connectivity Transform (GCT) for channelized reservoirs calibration. We first develop the Pareto-based model ranking (PBMR) to rank multiple realizations, taking into consideration seismic and production data. We demonstrate that this approach can be applied to select multiple competitive realizations compared with the weighted-sum method, and uncertainty range of each objective can be effectively addressed. Next, we extend the Pareto-based framework to full-field history matching and production optimization of the Norne Field in the North Sea. A ...