魚油對敗血症小鼠發炎反應及粒線體功能之影響

目錄 I 第一章 文獻回顧 1 第一節 敗血症 1 第二節 過氧化小體增生活化接受器 (peroxisome proliferators -activated receptor, PPAR)在敗血症中扮演的角色 2 第三節 敗血症對粒線體功能之影響 3 第四節 n-3脂肪酸對發炎反應介質之影響 5 第五節 n-3脂肪酸的劑量 7 第二章 研究動機與目的 9 第三章 材料與方法 10 第一節 實驗動物 10 第二節 實驗設計 10 第三節 分析項目 12 3-1血液分析: 12 3-2 腹腔沖洗液的分析: 12 3-3 器官中骨髓過氧化酶 (MPO)活性之測定 13 3-4 分析肝臟中核蛋白PP...

Full description

Bibliographic Details
Main Author: 李正中
Other Authors: 保健營養學研究所
Language:Chinese
English
Published: 2010
Subjects:
Online Access:http://libir.tmu.edu.tw/handle/987654321/36353
http://libir.tmu.edu.tw/bitstream/987654321/36353/1/index.html
Description
Summary:目錄 I 第一章 文獻回顧 1 第一節 敗血症 1 第二節 過氧化小體增生活化接受器 (peroxisome proliferators -activated receptor, PPAR)在敗血症中扮演的角色 2 第三節 敗血症對粒線體功能之影響 3 第四節 n-3脂肪酸對發炎反應介質之影響 5 第五節 n-3脂肪酸的劑量 7 第二章 研究動機與目的 9 第三章 材料與方法 10 第一節 實驗動物 10 第二節 實驗設計 10 第三節 分析項目 12 3-1血液分析: 12 3-2 腹腔沖洗液的分析: 12 3-3 器官中骨髓過氧化酶 (MPO)活性之測定 13 3-4 分析肝臟中核蛋白PPAR-γ 14 3-5 分析肝臟中p65 (NF-κB subunit)及iNOS的蛋白質表現量 14 3-6 肝細胞粒線體的形態觀察 15 3-7 粒線體電子傳遞鏈酵素活性測試 16 第四節 統計分析 21 第四章 結果 22 表1. 實驗飲食之成分 25 表2、實驗小鼠體重變化 26 表3、實驗動物血漿中AST、ALT值 27 表4、各器官中骨髓過氧化酶之活性 28 表5、肝臟粒線體呼吸鏈酵素活性 29 圖1、CLP後在各時間點不同組別間血漿中TNF-α (A)及NO (B)之濃度 30 圖2、CLP後在各時間點不同組別間腹腔沖洗液中TNF-α (A)及PGE2 (B)之濃度 31 圖3、CLP後在各時間點不同組別間肝臟中PPAR-γ 之轉錄活性 32 圖4、CLP後在各時間點不同組別間肝臟中p65 (NF-κB subunit)之蛋白質表現量 33 圖5、CLP後在各時間點不同組別間肝臟中iNOS之蛋白質表現量 34 圖6、CLP後在各時間點不同組別間肝臟中nitrotyrosine 之濃度 35 圖7、CLP後在各時間點不同組別間肝臟粒線體之型態 36 第五章 討論 37 第一節 魚油劑量探討 37 第二節 魚油對敗血症小鼠發炎反應之影響 37 第三節 魚油對肝臟發炎及粒線體功能之影響 39 第六章 結論 42 第七章 參考文獻 43 Adrie C, Bachelet M, Vayssier-Taussat M, Russo-Marie F, Bouchaert I, Adib-Conquym M, Cavaillon JM, Pinsky MR, Dhainaut JF, Polla B. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med 2001; 164: 389-395. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303-1310. Abdelrahman M, Sivarajah A, Thiemermann C. Beneficial effects of PPAR- ligands in ischemia–reperfusion injury, inflammation and shock. Cardiovasc Res 2005; 65: 772-781. Avontuur JA, Stam TC, Jongen-Lavrencic M, van Amsterdam JG, Eggermont AM, Bruining HA. Effect of L-NAME, an inhibitor of nitric oxide synthesis, on plasma levels of IL-6, IL-8, TNF alpha and nitrite/nitrate in human septic shock. Intensive Care Med 1998; 24: 673-679. Bone RC, Grodzin CJ, and Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 1997; 112: 235-243. Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 1997; 68: 2227-2240 Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002; 360: 219-223. Barbosa DS, Cecchini R, El Kadri MZ, Rodriguez MA, Burini RC, Dichi I. Decreased oxidative stress in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 2003; 19: 837-842 Bolaños JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ .Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 1997; 68: 2227-2240. Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov 2005; 4: 854-865. Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 2006; 83: 1505S–1519S Chang HR, Arsenijevic D, Pechere JC, Piguet PF, Mensi N, Girardier L, Dulloo AG. Dietary supplementation with fish oil enhances in vivo synthesis of tumor necrosis factor. Immunol Lett 1992; 34: 13-17. Camandola S, Leonarduzzi G, Musso T, Varesio L, Carini R, Scavazza A, Chiarpotto E, Baeuerle PA, Poli G. Nuclear factor kB is activated by arachidonic acid but not by eicosapentaenoic acid. Biochem Biophys Res Commun 1996; 229: 643-647. Carbonell T, Rodenas J, Miret S, Mitjavila MT. Fish oil and oxidative stress by inflammatory leukocytes. Free Radic Res 1997; 27: 591-597 Cepinskas G, Katada K, Bihari A, Potter RF. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol 2008; 294: G184 - G191. Crouser ED, Julian MW, Huff JE, Struck J, Cook CH. Carbamoyl phosphate synthase-1: a marker of mitochondrial damage and depletion in the liver during sepsis. Crit Care Med 2006; 34: 2439-2446. Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 2004; 4: 729-741. ChiuWC, Hou YC, Yeh CL, Hu YM, Yeh SL. Effect of dietary fish oil supplementation on cellular adhesion molecule expression and tissue myeloperoxidase activity in diabetic mice with sepsis. Br J Nutr 2007; 97: 685-691 Demaison L, Sergiel JP, Moreau D, GrynbergA. Influence of the phospholipid n-6/n-3 polyunsaturated fatty acid ratio on the mitochondrial oxidative metabolism before and after myocardial ischemia. Biochim Biophys Acta 1994; 1227: 53-59. Dubuquoy L, Rousseaux C, Thuru X, Peyrin-Biroulet L, Romano O, Chavatte P, Chamaillard M, Desreumaux P. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut 2006; 55: 1341-1349. Fritsche KL, Feng C, Berg JN. Dietary fish oil enhances circulating interferon-gamma in mice during listeriosis without altering in vitro production of this cytokine. J Interferon Cytokine Res1997; 17: 271-277. Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin 2001; 17: 219-237. Ghafourifar P, Schenk U, Klein SD, Richter C. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 1999; 274: 31185-31188. Harrois A, Huet O, Duranteau J. Alterations of mitochondrial function in sepsis and critical illness. Curr Opin Anaesthesiol 2009; 22: 143-149. Hildes JA, Schaefer O. The changing picture of neoplastic disease in the western and central Canadian Arctic (1950-1980). Can Med Assoc J 1984; 130: 25-32. Hill MR, Young MD, McCurdy CM, Gimble JM. Decreased expression of murine PPARgamma in adipose tissue during endotoxemia. Endocrinology 1997; 138: 3073-3076. Hsu CS, ChiuWC, Yeh CL, Hou YC, Chou SY, Yeh SL. Dietary fish oil enhances adhesion molecule and interleukin-6 expression in mice with polymicrobial sepsis. Br J Nutr 2006; 96: 854-860. Hurt RT, Matheson PJ, Mays MP, Garrison RN. Immune-enhancing diet and cytokine expression during chronic sepsis: an immune-enhancing diet containing L-arginine, fish oil, and RNA fragments promotes intestinal cytokine expression during chronic sepsis in rats. J Gastrointest Surg 2006; 10: 46-53. Higuchi S,Wu R, Zhou M, Ravikumar TS,Wang P. Downregulation of Hepatic Cytochrome P-450 Isoforms and PPAR-gamma: Their Role in Hepatic Injury and Proinflammatory Responses in a Double-Hit Model of Hemorrhage and Sepsis. J Surg Res 2007; 137: 46-52. Hyde SR, Stith RD, McCallum RE. Mortality and bacteriology of sepsis following cecal ligation and puncture in aged mice. Infect. Immun 1990; 58: 619-624. Kebir DEl, József L, Pan W, Filep JG. Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation. Circ Res 2008; 103: 352-359. Kelley DS, Taylor PC, Nelson GJ, et al. Docosahexaenoic acid inges- tion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids 1999; 34: 317-324. Kremer JM. Clinical studies of omega-3 fatty acid supplementation in patients who have rheumatoid arthritis. Rheum Dis Clin North Am 1991; 17: 391-402. Kremer JM, Malamood H, Maliakkal B, Rodgers JB, Ross JS, Cooper JA. Fish oil dietary supplementation for prevention of indomethacin induced gastric and small bowel toxicity in healthy volunteers. J Rheumatol 1996; 23: 1770-1773. Koller M, Senkal M, Kemen M, KonigW, Zumtobel V, Muhr G. Impact of omega-3 fatty acid enriched TPN on leukotriene synthesis by leukocytes after major surgery. Clin Nutr 2003; 22: 59-64. Korthuis RJ, Anderson DC, Granger DN. Role of neutrophil-endothelial cell adhesion in inflammatory disorders. J Crit Care 1994; 9: 47-71. Kim YJ, Kim HJ, No JK, Chung HY, Fernandes G. Anti-inflammatory action of dietary fish oil and calorie restriction. Life Sci 2006; 78: 2523-2532. Lanza-Jacoby S, Flynn JT, Miller S. Parenteral supplementation with a fish-oil emulsion prolongs survival and improves rat lymphocyte function during sepsis. Nutrition 2001; 17: 112-116. Levy RJ, Vijayasarathy C, Raj NR, Avadhani NG, Deutschman CS. Competitive and noncompetitive inhibition of myocardial cytochrome C oxidase in sepsis. Shock 2004; 21: 110-114. Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, Moorhead JF, Varghese Z. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int 2005; 67: 867-874. Liu D, Zeng BX, Zhang SH, Yao SL. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces pulmonary inflammatory response in a rat model of endotoxemia. Inflamm Res 2005; 54: 464-470. Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, Chopin C, Neviere R. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 2006; 48: 377-385. Maier S, Traeger T, Entleutner M, Westerholt A, Kleist B, Hüser N, Holzmann B, Stier A, Pfeffer K, Heidecke CD. Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis. Shock 2004; 21: 505-511. Mahadevan K, Dhillon S, Bandi V, Rumbaut RE. Nitric oxide, neutrophil activation and capillary filtration coefficient in patients with sepsis. Chest Meeting Abstracts 2003; 128: 120. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546-1554. Mayer K, Fegbeutel C, Hattar K, Sibelius U, Kramer HJ, Heuer KU, Bemmesfeld-Wollbruck T, Gokorsch S, Grimminger F, Seeger W. Omega-3 vs. omega-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on plasma fatty acids and lipid mediator generation. Intensive Care Med 2003; 29: 1472-1481. Radi R, Rodriguez M, Castro L, Telleri R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 1994; 308: 89-95. Ricote M, Li AC,Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79-82. Sarti P, Arese M, Bacchi A, Barone MC, Forte E, Mastronicola D, Brunori M, Giuffre A. Nitric oxide and mitochondrial complex IV. IUBMB Life 2003; 55: 605-611. Schweizer M and Richter C. Nitric oxide potently and reversibly deenergizes mitoehondria. Biochem Bioplys Res Commun 1994 204: 169-175. Soller M, Tautenhahn A, Brune B, Zacharowski K, John S, Link H, von Knethen A. Peroxisome proliferator-activated receptor gamma contributes to T lymphocyte apoptosis during sepsis. J Leukoc Biol 2006; 79: 235-243. Siddiqui AM, Cui X, Wu R, Dong W, Zhou M, Hu M, Simms HH, Wang P. The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-gamma. Crit Care Med 2006; 34: 1874-1882. Sung Y and Dietert RR. Nitric oxide (.NO)-indueed mitochondrial injury among chicken .NO-generating and target leukocytes. J Leukocyte Biol 1994; 56: 52-58. Tiesset H, Pierre M, Desseyn JL, Guéry B, Beermann C, Galabert C, Gottrand F, Husson MO.Dietary (n-3) Polyunsaturated fatty acids affect the kinetics of pro- and antiinflammatory responses in mice with Pseudomonas aeruginosa lung infection. J Nutr 2009; 139: 82-89. Trebble TM, Wootton SA, Miles EA, et al. Prostaglandin E2 production and T-cell function after fish-oil supplementation: response to antiox- idant co-supplementation. Am J Clin Nutr 2003; 78: 376–382. Tsekos E, Reuter C, Stehle P, Boeden G. Perioperative administration of parenteral fish oil supplements in a routine clinical setting improves patient outcome after major abdominal surgery. Clin Nutr 2004; 23: 325-330. Wu T, Geigerman C, Lee YS,Wander RC. Enrichment of LDL with EPA and DHA decreased oxidized LDL-induced apoptosis in U937 cells. Lipids 2002; 37: 789-796. Wendel M, Paul R, Heller AR. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med 2007; 33: 25-35. Yeh SL, Chang KY, Huang PC, ChenWJ. Effects of n-3 and n-6 fatty acids on plasma eicosanoids and liver antioxidant enzymes in rats receiving total parenteral nutrition. Nutrition 1997; 13: 32-36. Yan Z, Stapleton PP, Freeman TA, Fuortes M, Daly JM. Enhanced expression of cyclooxygenase-2 and prostaglandin E2 in response to endotoxin after trauma is dependent on MAPK and NF-kappaB mechanisms. Cell Immunol 2004; 232: 116-126. 敗血症 (sepsis)為臨床上常見因感染所引發之病症,其死亡率高達30-70 %。敗血症晚期發生敗血性休克,主要的死亡原因為多重器官衰竭,而促發炎物質的過度產生及粒線體功能異常被認為在多重器官衰竭的病理過程中扮演重要的角色。本實驗是探討在飲食中補充魚油對敗血症小鼠發炎反應及粒線體功能之影響。將雄性ICR小鼠分成兩組 (n=60),分別為給予含10 %大豆油的控制組 (C)、2.5 %魚油混合7.5 %大豆油組 (FO),在FO組飼料中n-3:n-6脂肪酸的比例為1:2。餵養三週後進行盲腸結紮穿刺手術 (cecal ligation and puncture, CLP)引致敗血症,並於第0、6、及24小時犧牲動物,取其血液、腹腔沖洗液 (peritoneal lavage fluid, PLF)、肝、肺、及腎進行分析。結果顯示FO組在PLF中 prostaglandin (PG) E2及tumor nercrosis factor (TNF)-α濃度及在敗血症後第6和24小時血漿中FO組之TNF-α及亞硝酸鹽 (nitrite)濃度皆顯著低於C組。CLP後第6小時FO組器官中骨髓過氧化酶 (myeloperoxidas, MPO)活性顯著低於C組。敗血症後FO組肝臟中PPAR-γ轉錄活性顯著高於C組,而FO組p65 (NF-κB subunit) 、 inducible nitric oxides synthase (iNOS)蛋白質表現量及nitrotyrosine的濃度則皆顯著低於C組。C組肝臟粒線體酵素活性在敗血症早期顯著降低,而FO組NADH cytochrome c reductase (NCCR)、succinate cytochrome c reductase (SCCR)及cytochrome c oxidase (CCO)活性皆顯著高於C組。本實驗結果顯示飲食中補充魚油可增加敗血症小鼠PPAR-γ轉錄活性並降低體內促發炎激素之濃度,且維持肝臟粒線體電子傳遞鏈之酵素活性。 Sepsis is a common clinical disease induced by infection and multiple organ dysfunction syndrome (MODS) is the main cause of death in the late phase of septic shock. Overproduction of pro-inflammatory mediators and mitochondrial dysfunction are thought to play important roles in pathogenesis of MODS. This study investigated the effects of dietary fish oil on inflammatory response and hepatic mitochondrial function in a cecal ligation and puncture (CLP)-induced septic mice model. Male ICR mice were assigned to a control group (C) and the fish oil group (FO) (n=60). Mice in the C group were fed with a semi-purified diet with 10% soybean oil, and those in the FO group was fed with a fish oil diet (2.5% fish oil+ 7.5% soybean oil; w/w). The ratio of n-3/n-6 fatty acid was 1:2 in FO group. Three weeks later, blood, peritoneal lavage fluid (PLF), livers, lung, kidney, and intestine were harvested at 0, 6 and 24 h after CLP, respectively. Compared with C group, the FO group showed a lower prostaglandin (PG) E2 and tumor necrosis factor (TNF)-α in PLF. Also, plasma levels of TNF-α and nitrite were lower at 6 and 24 h after CLP. The FO group had lower organs myeloperoxidase (MPO) activities at 6 h after CLP. The transcriptional activity of peroxisome proliferators-activated receptor (PPAR)-γ was up-regulated while NF-κB p65 subunit, iNOS protein expression and the concentration of nitrotyrosine were significantly decreased in FO group than C group in liver homogenate after CLP. Hepatic mitochondrial respiratory chain enzyme activities were suppressed during early stage of sepsis in C group. The rotenone-sensitive NADH cytochrome c reductase, succinate cytochrome c reductase and the cytochrome c oxidase activities were higher in the FO group at 6h after CLP. The morphology showed enlargement of hepatic mitochondria during early stage of sepsis. These results suggest that mice fed with fish oil up-regulate the transcriptional activity of PPAR-γ, reduce pro-inflammatory mediator levels and maintain hepatic mitochondrial electron-transport chain enzyme activities in septic mice.