Mathematical Model of the Downward Two-Phase Flow of a Heat-Transfer Agent in an Injection Well

At the present time, the main method of developing highly viscous and bituminous oil reservoirs is the injection of hot water or steam into such reservoirs. When injecting heat-transfer agent into a porous reservoir, its characteristics at the wellhead are known. It is important to know the paramete...

Full description

Bibliographic Details
Published in:Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming and Computer Software"
Main Authors: Musakaev, N. G., Borodin, S. L., Rodion, S. P.
Other Authors: Russian Science Foundation (project no. 18-19-00049), Российский научный фонд (проект № 18-19-00049).
Format: Article in Journal/Newspaper
Language:Russian
Published: South Ural State University 2020
Subjects:
Online Access:https://vestnik.susu.ru/mmp/article/view/9839
https://doi.org/10.14529/mmp190305
Description
Summary:At the present time, the main method of developing highly viscous and bituminous oil reservoirs is the injection of hot water or steam into such reservoirs. When injecting heat-transfer agent into a porous reservoir, its characteristics at the wellhead are known. It is important to know the parameters of a heat-transfer agent (pressure, temperature, mass content of steam in a two-phase mixture “water-steam”, etc.) directly at the reservoir entrance. In order to calculate various parameters of a heat-transfer agent along the injection well depth (including the bottomhole), we propose a mathematical model of the downward flow of a hot “water-steam” mixture in a vertical channel. The model takes into account phase transitions occurring in a two-phase “water-steam” mixture, and external heat exchange of the well product with surrounding rocks (including permafrost). Based on the proposed mathematical model, we develop an algorithm to solve a quasistationary problem. In this case, we use the Runge–Kutta method in order to solve the system of differential equations describing the stationary flow of a heat-transfer agent in a well. Also, in order to solve the non-stationary problem of temperature distribution in the rocks that surround the well (including permafrost), we use the author enthalpy method with implicit scheme. For each time moment, the developed software allows to find the distributions along the well depth of various parameters of the downward two-phase flow, taking into account external heat exchange, as well as the temperature distribution in the rocks that surround the well and the permafrost thawing radius. В настоящее время основным методом разработки месторождений высоковязких и битумных нефтей является закачка горячей воды или пара в нефтенасыщенный пласт. При закачке теплоносителя в пористый коллектор известны его характеристики на устье скважины. При этом важно знать параметры теплоносителя (давление, температура, массовое содержание пара в двухфазной смеси ≪вода-пар≫ и т.д.) непосредственно на входе в пласт. Для расчета различных параметров теплоносителя по глубине нагнетательной скважины (в том числе и на забое) предложена математическая модель нисходящего течения горячей пароводяной смеси в вертикальном канале. В модели учтены фазовые переходы, происходящие в двухфазной смеси ≪вода-пар≫, и внешний теплообмен скважины с окружающими горными породами (в том числе и многолетнемерзлыми). На основе предложенной математической модели разработан алгоритм, базируясь на котором, решается квазистационарная задача. При этом методом Рунге – Кутты 4-го порядка точности решается система дифференциальных уравнений, описывающая стационарное течение теплоносителя в скважине, и авторским методом энтальпий с использованием неявной схемы решается нестационарная задача распределения температуры в окружающих скважину породах (в том числе мерзлых). Разработанный программный продукт позволяет найти для каждого момента времени распределение по глубине скважины различных параметров нисходящего двухфазного потока с учетом внешнего теплообмена, а также для различных моментов времени эксплуатации скважины распределение температуры в окружающих горных породах и радиус протаивания многолетнемерзлых пород