Blue petrel electrocardiograms measured through a dummy egg reveal a slow heart rate during egg incubation

International audience Background: Seabirds like penguins and petrels, living in Antarctic and sub-Antarctic regions, often feed hundreds or even thousands of kilometers away from the islands where they breed. They therefore adapted to endure prolonged fasting during egg incubation, enabling their p...

Full description

Bibliographic Details
Published in:Animal Biotelemetry
Main Authors: Bonadonna, Francesco, Caro, Samuel P., Belle, Solenne, Torrente, Angelo, G
Other Authors: Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM), Institut de Génomique Fonctionnelle (IGF), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2024
Subjects:
ECG
Online Access:https://hal.science/hal-04661892
https://hal.science/hal-04661892/document
https://hal.science/hal-04661892/file/Bonadonna%20et%20al%202004%20%28Anim%20Biotel%29.pdf
https://doi.org/10.1186/s40317-024-00374-1
Description
Summary:International audience Background: Seabirds like penguins and petrels, living in Antarctic and sub-Antarctic regions, often feed hundreds or even thousands of kilometers away from the islands where they breed. They therefore adapted to endure prolonged fasting during egg incubation, enabling their partner to undertake foraging trips that can last up to two weeks. Aside from accumulating and consuming fat reserves, it is unclear whether seabirds have developed further adaptations to extended fasting periods. This lack of knowledge is in part due to their remote nesting location and their extreme sensitivity to manipulation. To overcome this lack of knowledge, we developed a non-invasive device to record the heart rate (HR) of burrow-nesting blue petrels (Halobaena caerulea) during egg incubation. For that, we encapsulated a small-size logger in a dummy egg to record electrocardiograms (ECGs) through the featherless incubation patch of the birds.Results: The blue petrels’ HR (208 ± 15 beats per min [bpm]; n = 6) that we recorded during egg incubation was slower than the HR predicted by two different allometric functions regressing HR against body mass (242 and 250 bpm). Blue petrels’ HR also presented cyclical variation correlated to respiration, resembling the physiological Respiratory Sinus Arrhythmia (RSA) described in humans and other species, and that is mainly modulated by the vagal nerve. Moreover, the basal HR of incubating blue petrels increased about every minute during egg movements that presumably reflect egg turning, important for embryo survival and development. During these events, blue petrels’ HR increased up to a maximum of 296 ± 27 bpm for 18 ± 2 s (n = 6). We estimated that those egg movements increased energy expenditure (EE) by 8.4 ± 1.3%, which is approximately 10 times less than the energy increase induced by the disturbance linked with the removal of the dummy egg at the end of the experiment. Interestingly, we noticed that the beginning of HR increase preceded egg movements by 4.3 ± 0.9 ...