Additive effects of climate and fisheries drive ongoing declines in multiple albatross species

International audience Environmental and anthropogenic factors often drive population declines in top predators, but how their influences may combine remains unclear. Albatrosses are particularly threatened. They breed in fast-changing environments, and their extensive foraging ranges expose them to...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Pardo, Deborah, Forcada, Jaume, Wood, Andrew G., Tuck, Geoff, Ireland, Louise, Pradel, Roger, Croxall, John P., Phillips, Richard
Other Authors: British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.science/hal-01911561
https://doi.org/10.1073/pnas.1618819114
Description
Summary:International audience Environmental and anthropogenic factors often drive population declines in top predators, but how their influences may combine remains unclear. Albatrosses are particularly threatened. They breed in fast-changing environments, and their extensive foraging ranges expose them to incidental mortality (bycatch) in multiple fisheries. The albatross community at South Georgia includes globally important populations of three species that have declined by 40–60% over the last 35 years. We used three steps to deeply understand the drivers of such dramatic changes: (i) describe fundamental demographic rates using multievent models, (ii) determine demographic drivers of population growth using matrix models, and (iii) identify environmental and anthropogenic drivers using ANOVAs. Each species was affected by different processes and threats in their foraging areas during the breeding and nonbreeding seasons. There was evidence for two kinds of combined environmental and anthropogenic effects. The first was sequential; in wandering and black-browed albatrosses, high levels of bycatch have reduced juvenile and adult survival, then increased temperature, reduced sea-ice cover, and stronger winds are affecting the population recovery potential. The second was additive; in gray-headed albatrosses, not only did bycatch impact adult survival but also this impact was exacerbated by lower food availability in years following El Niño events. This emphasizes the need for much improved implementation of mitigation measures in fisheries and better enforcement of compliance. We hope our results not only help focus future management actions for these populations but also demonstrate the power of the modelling approach for assessing impacts of environmental and anthropogenic drivers in wild animal populations.