Temporal and spatial dynamics of marine microorganisms in ice-covered seas

The anthropogenic emissions of CO2 and other climate-active gases lead to a steep increase of global temperatures. Global climate change is particularly amplified in the Arctic (e.g., Serreze et al., 2009; Serreze and Barry, 2011). Increasing temperatures and the rapid sea ice decline have shown pro...

Full description

Bibliographic Details
Main Author: Cardozo-Mino, Magda Guadalupe
Other Authors: Boetius, Antje, Brinkhoff, Thorsten
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 2022
Subjects:
80
Online Access:https://media.suub.uni-bremen.de/handle/elib/6389
https://doi.org/10.26092/elib/1951
https://nbn-resolving.org/urn:nbn:de:gbv:46-elib63893
Description
Summary:The anthropogenic emissions of CO2 and other climate-active gases lead to a steep increase of global temperatures. Global climate change is particularly amplified in the Arctic (e.g., Serreze et al., 2009; Serreze and Barry, 2011). Increasing temperatures and the rapid sea ice decline have shown profound effects on life in the Arctic ecosystem (Wassmann et al., 2011). Climate model predictions suggest a seasonally sea ice-free Arctic well before the first half of this century (Overland and Wang, 2013; Docquier and Koenigk, 2021). The composition, structure and function of the Arctic microbiome will be altered with distinct effects on the marine system, on primary productivity, carbon fluxes and food web structures. Changes in the composition and structure of primary producers were already observed in Fram Strait (Nöthig et al., 2015), the boundary and highly dynamic zone between the Atlantic and the Arctic Ocean. These changes were reflected in the export flux of particulate organic matter (Lalande et al., 2013), also observable in the benthic communities (Jacob, 2014). Thus, understanding how the microbial communities changed over time under different environmental conditions is a scientific task needed to assess future changes in the Arctic ecosystem. This thesis aimed to understand the composition, distribution and function of bacteria, archaea and eukaryotic communities in Fram Strait across different spatial and temporal scales and their relationship with environmental variables. The overall objective was to identify signature groups and key factors of change, to provide a baseline to the effects of climate change and sea ice retreat. It provides a comprehensive overview of the Arctic microbiome by the incorporation of seawater, sinking particles and sea ice samples to identify key microbial indicators of change and environmental drivers in these communities. Samples were obtained in the frame work of the Long-Term Ecological Research (LTER) site HAUSGARTEN and the FRontiers in Marine Monitoring (FRAM) ...