Vereisung der Antarktis im Känozoikum: Anwendung eines integrierten Klima-Eisschild-Modells.

A prominent climate change of the Earth system was the onset of Antarctic glaciation near the Eocene-Oligocene transition (~34 million years ago). The causes of this change are not yet well understood. The most common hypothesis are that glaciation resulted from a cooling of Antarctica due to plate...

Full description

Bibliographic Details
Main Author: Cristini, Luisa
Other Authors: Lohmann, Gerrit, Lemke, Peter
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 2010
Subjects:
530
Online Access:https://media.suub.uni-bremen.de/handle/elib/2825
https://nbn-resolving.org/urn:nbn:de:gbv:46-diss000119477
Description
Summary:A prominent climate change of the Earth system was the onset of Antarctic glaciation near the Eocene-Oligocene transition (~34 million years ago). The causes of this change are not yet well understood. The most common hypothesis are that glaciation resulted from a cooling of Antarctica due to plate tectonic repositioning and associated changes in ocean circulation or by a response to declining atmospheric pCO2 supported by the Earth's orbital configuration relative to the Sun. In this thesis these hypotheses are tested through sensitivity experiments with a new climate-ice sheet modeling approach, which takes into account the global oceanic and atmospheric circulation and the Antarctic cryosphere. The numerical models chosen for this study are Huybrechts (1993) ice sheet model for the Antarctic ice sheet (AIS), and COSMOS, composed of the atmospheric general circulation model ECHAM5 and the ocean general circulation model MPI-OM. MPI-OM is initialized by runs of the Large Scale Geostrophic ocean model (LSG).The modelling procedure is validated for modern climate and the results compared to observational data. Furthermore the robustness of the method is assessed by analysing the climate and AIS response to a doubling of the global atmospheric carbon dioxide (pCO2). The AIS modelled with this methodology is comparable with observations. This method is also usable to investigate changes in the atmospheric pCO2.The response of the Antarctic continent to the opening of the Drake Passage and to the establishment of the Antarctic Circumpolar Current (ACC) is examined. Two different climate states have been reproduced with global tectonic configurations including open and closed Passage. A reduced southward heat flux and a decrease of both water and air temperature is found around and over Antarctica when the gateway is open. A more massive ice sheet develops on the continent in this case. The influence of a specific concentration of pCO2 in the atmosphere for the onset of a major AIS is investigated. The climate with a ...