Quantitative estimation of aerobic diagenetic overprint of palaeoproductivity signals

Species-selective aerobic decomposition affects fossil organic-walled dinoflagellate cyst (dinocyst) records and hence dinocyst-based interpretations of primary productivity and oceanographic conditions. However, since the recognition of dinocyst species sensitive and resistant to oxic degradation (...

Full description

Bibliographic Details
Main Author: Kodrans-Nsiah, Monika
Other Authors: Zonneveld, Karin, Kasten, Sabine
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 2008
Subjects:
550
Online Access:https://media.suub.uni-bremen.de/handle/elib/2500
https://nbn-resolving.org/urn:nbn:de:gbv:46-diss000110299
Description
Summary:Species-selective aerobic decomposition affects fossil organic-walled dinoflagellate cyst (dinocyst) records and hence dinocyst-based interpretations of primary productivity and oceanographic conditions. However, since the recognition of dinocyst species sensitive and resistant to oxic degradation (S- and R-cysts, respectively) it has become apparent that R-cysts may still serve as reliable productivity and oceanographic conditions proxies. On the other hand S-cysts provide a way to quantify aerobic degradation of organic matter (OM) and past bottom-water O2 concentrations. OM degradation plays a key role in global carbon cycling and is important for global climate change. Therefore dinocysts are a valuable tool for estimating the rate of diagenetic process. Questions concerning species-selective aerobic degradation still remain and will be adressed here. To obtain information on the rate of S-cyst decomposition, the relationship between S-cyst degradation and O2 concentrations, and the aerobic degradation of extinct dinocyst species, a natural exposure experiment has been conducted and studies of both Quaternary and pre-Quaternary material from sediment cores were executed. The exposure experiment was conducted in the natural setting of the Eastern Mediterranean. During a 15 month exposure period to oxic water masses, concentrations of S-cysts (Brigantedinium spp. and Echinidinium granulatum) decreased by 24 to 57%. However, taxa such as Nematosphaeropsis labyrinthus, Echinidinium aculeatum, Operculodinium israelianum and Impagidinium aculeatum demonstrated a slight increase in concentration, indicating resistance to aerobic degradation. These results show that even short-term exposure to oxygen may cause considerable changes in the dinocyst assemblage and thus overprint the primary signal, leading to misinterpretation of the environmental conditions. No degradation was observed during exposure of S-cysts to anoxic water masses. Analysis of two short cores from the Atlantic sector of the Southern Ocean ...