Resolving Leads in Sea-Ice Models : New Analysis Methods for Frontier Resolution Arctic Simulations

Sea ice deforms constantly under the forcing of winds and ocean currents. Eventually the ice cover of the Arctic Ocean breaks into a multitude of ice floes. Strips of open ocean, so-called leads, and pressure ridges, where the collision of floes piled up the ice, are found along the floe boundaries....

Full description

Bibliographic Details
Main Author: Hutter, Nils
Other Authors: Jung, Thomas, Haas, Christian
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 2019
Subjects:
530
Online Access:https://media.suub.uni-bremen.de/handle/elib/1711
https://nbn-resolving.org/urn:nbn:de:gbv:46-00107794-12
Description
Summary:Sea ice deforms constantly under the forcing of winds and ocean currents. Eventually the ice cover of the Arctic Ocean breaks into a multitude of ice floes. Strips of open ocean, so-called leads, and pressure ridges, where the collision of floes piled up the ice, are found along the floe boundaries. These features have a strong impact on the interaction of sea ice with the atmosphere and the ocean, as they affect heat loss and surface drag. Currently, climate models do not resolve leads and pressure ridges in simulated sea ice fields due to their coarse resolution. They parameterize the effects of leads on the Arctic climate, if at all. The goal of this thesis is to develop Arctic simulations that reproduce leads sufficiently to be used in climate simulations. By decreasing the horizontal grid-spacing, a numerical ocean sea-ice model is shown to resolve leads explicitly. To test how realistic these lead-resolving sea-ice simulations are, the following research questions are addressed: (1) what are good metrics to evaluate the simulated leads with observational data? (2) Which observed characteristics of sea ice deformation and deformation features are reproduced by the model? In a first step, the sea ice deformation in a 1-km lead-resolving sea-ice simulation is analyzed with a spatio-temporal scaling analysis. The simulated sea ice deformation is strongly localized in failure zones and dominated by spontaneous fracture. This heterogeneity and intermittency of sea ice deformation shows that the simulation captures the fracture processes that form leads. In a second step, two new algorithms are described that detect and track leads and pressure ridges, combined into Linear Kinematic Features (LKFs). Both algorithms are applied to deformation data observed from satellite to establish a data set of deformation features that can be used as a reference in model evaluation. LKFs in two lead-resolving sea-ice simulations are extracted with the same algorithms, and found to agree with the LKF data set with respect to ...