Modeling the impacts of ocean warming and acidification on marine fish and ecosystems in the Barents Sea

Marine ecosystems are known to be climatea dependent, and impacts from progressing global climate change are increasingly observed and anticipated to intensify in the course of the 21st century. Under continuously high anthropogenic greenhouse gas emissions, drivers such as ocean warming, ocean acid...

Full description

Bibliographic Details
Main Author: Königstein, Stefan
Other Authors: Pörtner, Hans-Otto, Gößling-Reisemann, Stefan, Reuter, Hauke
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 2017
Subjects:
570
Online Access:https://media.suub.uni-bremen.de/handle/elib/1252
https://nbn-resolving.org/urn:nbn:de:gbv:46-00105991-10
Description
Summary:Marine ecosystems are known to be climatea dependent, and impacts from progressing global climate change are increasingly observed and anticipated to intensify in the course of the 21st century. Under continuously high anthropogenic greenhouse gas emissions, drivers such as ocean warming, ocean acidification, and deoxygenation will increasingly affect marine ecosystems and the provision of marine ecosystem services to human societies. Environmental drivers affect organismal processes directly, but also have indirect effects through biotic interactions. Human societies are dependent on the ecosystem services provided by the oceans, and have limited adaptive capacities to changes in ecosystem service provision. An integrated evaluation of marinea human systems is thus necessary to understand coming changes, and is increasingly pursued by recent ecosystema based and integrated assessment and management approaches. The uncertainty of future climate change impacts and the interactions with the increasing anthropogenic pressures on marine systems need to be addressed. Ecological models are important tools to provide this integration of data and processes, as they can put experimental and observational data into context, and enable us to move beyond simple extrapolations of future states and experiences, creating an understanding of the changes in marine ecosystems anticipated in the future. While a wide variety of modeling approaches is available to answer specific ecological questions, a quantitative integration over different hierarchical levels, and different types of data and knowledge, is rarely achieved. The presented thesis revolves around a case study from the Barents Sea, which is among the marine regions with the earliest impacts of ocean acidification and warming expected and already observed, providing an integrative view of the impacts of these drivers on marine ecosystems and the provision of ecosystem services in the focus region. The work was built upon a thorough general analysis of available modeling ...