The Dynamical Subtropical Front

The Southern Ocean Subtropical Front (STF) is thought to play a key role in the global climate system. Theory suggests that the latitude of the STF regulates the volume of saline Agulhas Leakage into the Atlantic Ocean from the Indian. Here we use satellite sea surface temperature (SST) and sea surf...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Graham, Robert M., De Boer, Agatha M.
Format: Article in Journal/Newspaper
Language:English
Published: Stockholms universitet, Institutionen för geologiska vetenskaper 2013
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-97487
https://doi.org/10.1002/jgrc.20408
Description
Summary:The Southern Ocean Subtropical Front (STF) is thought to play a key role in the global climate system. Theory suggests that the latitude of the STF regulates the volume of saline Agulhas Leakage into the Atlantic Ocean from the Indian. Here we use satellite sea surface temperature (SST) and sea surface height (SSH) data to study the physical characteristics of the STF water mass boundary. We find that the strong currents in this region do not align with the surface water mass boundary. Therefore, we provide a new climatology for these currents which we define as the Dynamical STF (DSTF). The DSTF is the eastward extension of the western boundary current in each basin and is characterized by strong SST and SSH gradients and no seasonal cycle. At the center of each basin it merges with the Sub-Antarctic Front. On the eastern side of basins, the STF surface water mass boundary coincides with a separate region of multiple SST fronts. We call this the Subtropical Frontal Zone (STFZ). The fronts in the STFZ have a large seasonal cycle and no SSH signature. Despite lying close to the same water mass boundary, the DSTF and STFZ are completely unrelated. We therefore suggest the term STF only be used when referring to the surface water mass boundary. When studying the strong currents on the western side of basins the term DSTF is more relevant and, similarly, the term STFZ better describes the region of enhanced SST gradients towards the east. AuthorCount: 2;