Remobilization of terrestrial carbon across temporal and spatial scales deduced from the Arctic Ocean sediment record

Arctic warming is expected to trigger large-scale environmental change including remobilization of terrestrial organic carbon (terrOC). Permafrost and peatland systems contain more than twice as much carbon as the atmosphere, and may upon destabilization expose large amounts of their carbon to micro...

Full description

Bibliographic Details
Main Author: Martens, Jannik
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Stockholms universitet, Institutionen för miljövetenskap 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-192062
Description
Summary:Arctic warming is expected to trigger large-scale environmental change including remobilization of terrestrial organic carbon (terrOC). Permafrost and peatland systems contain more than twice as much carbon as the atmosphere, and may upon destabilization expose large amounts of their carbon to microbial decomposition and release climate-forcing greenhouse gases (GHG). Remobilization of terrOC also causes lateral leakage of organic matter via Arctic rivers with further translocated organic matter degradation and GHG release, while a remainder is exported to the Arctic Ocean and re-deposited in sediments. Arctic Ocean sediments are thus receptors of terrOC remobilization for a large part of the circum-Arctic drainage basin, and offer an archive to study past terrOC remobilization, e.g. during warming periods of the last deglaciation. This thesis investigates terrOC in Arctic Ocean sediments to study OC remobilization from permafrost and other terrestrial systems across temporal and spatial scales. As a first – historical – approach, permafrost OC remobilization and degradation during past warming episodes are studied using OC, dual-isotope source apportionment (13C-OC; 14C-OC) and terrestrial biomarkers (lignin phenols, long-chained n-alkanes and n-alkanoic acids) in glacial-cycle sediment cores from the Siberian continental margin. The results reveal that permafrost systems were highly vulnerable to OC release throughout past warming events, foremost during the Bølling–Allerød (14.7-12.9 kyr before present - BP) warming period and the early Holocene climate optimum (11.7-7.5 kyr BP). The sediment record shows that climate warming of about 1°C and 1.5°C (Northern Hemisphere) then triggered large-scale thawing of mostly coastal permafrost and permafrost soils in the Siberian hinterland. These results are consistent with the hypothesis that large-scale permafrost OC remobilization may have contributed to the observed rise in atmospheric CO2 during the last deglaciation, and thereby stresses the importance of ...