Fluorine mass balance in wildlife and consumer products : How much organofluorine are we missing?

Per- and polyfluoroalkyl substances (PFASs) are a class of anthropogenic pollutants. Many PFASs are highly persistent and have been linked to adverse effects in humans. According to latest estimates, there are more than 4700 PFASs in global commerce, which poses immense challenges for environmental...

Full description

Bibliographic Details
Main Author: Schultes, Lara
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi 2019
Subjects:
EOF
TF
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-167449
Description
Summary:Per- and polyfluoroalkyl substances (PFASs) are a class of anthropogenic pollutants. Many PFASs are highly persistent and have been linked to adverse effects in humans. According to latest estimates, there are more than 4700 PFASs in global commerce, which poses immense challenges for environmental monitoring. This thesis aims at the development, validation and application of total fluorine (TF) and extractable organic fluorine (EOF) methods to consumer products and wildlife in order to estimate the fraction of unidentified organic fluorine in these samples via fluorine mass balance calculations. Fluoropolymer-coated food packaging materials and reference materials were used in paper I to validate and compare the performance of three different TF methods. Combustion ion chromatography (CIC), particle-induced gamma ray emission spectroscopy (PIGE) and instrumental neutron activation analysis (INAA) revealed excellent analytical agreement and precision under most circumstances. PIGE and INAA had the advantage of being non-destructive, while CIC was favored due to low detection limits. Fluorine mass balance experiments indicated large amounts of unidentified EOF and non-extractable fluorine. Paper II investigated the occurrence of PFASs, EOF and TF in cosmetic products from the Swedish market. In addition to extremely high concentrations (up to 470 µg/g) of polyfluoroalkyl phosphate diesters (diPAPs; perfluoroalkyl acid (PFAA) precursors), unintentionally-added PFAAs were found in a number of products, together with large amounts of unidentified organic fluorine. Human exposure estimates for perfluorooctanoate (PFOA) using the latest dermal uptake coefficients revealed that PFAA exposure via cosmetics may be significant. Paper III evaluated time trends of PFASs, EOF and TF in Baltic cod (Gadus morhua) from 1981 to 2013. Increasing trends were observed for the predominant PFAS perfluorooctane sulfonate (PFOS), as well as for C9-C12 perfluoroalkyl carboxylic acids (PFCAs) at rates of up to 7.7% per year. Declining ...