Light conditions in seasonally ice-covered waters : within the Baltic Sea region

Seasonal ice cover is a major driver of seasonality in aquatic ecosystems in the Baltic Sea region. Ice cover influences the underwater light conditions directly by limiting the light transfer and indirectly by modifying the mixing and circulation under the ice. Light conditions and stratification a...

Full description

Bibliographic Details
Main Author: Kari, Elina
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Stockholms universitet, Institutionen för ekologi, miljö och botanik 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-157483
Description
Summary:Seasonal ice cover is a major driver of seasonality in aquatic ecosystems in the Baltic Sea region. Ice cover influences the underwater light conditions directly by limiting the light transfer and indirectly by modifying the mixing and circulation under the ice. Light conditions and stratification are key factors controlling the onset of the phytoplankton spring bloom. Therefore, the seasonal ice cover has an important role in setting the time frames for the primary production and in influencing the seasonality of the ecological processes. This thesis investigates the optical properties of the ice cover and the bio-optical substances in the water column. Bio-optical substances, suspended particulate matter (SPM), Coloured dissolved organic matter (CDOM) and Chlorophyll-a (Chl-a), determine the availability and spectral distribution of light. Measuring turbidity is quick and easy compared to the gravimetrical determination of the SPM concentration. Paper I provides a new model to estimate the concentration of SPM from turbidity. The new SPM-turbidity model predicts SPM concentrations well, despite the high CDOM absorption and the optical differences in the coastal northwestern and southeastern Baltic proper. Therefore, the new SPM-turbidity model offers a cost-effective and reliable method to monitor SPM concentration. The light transfer through the snow and ice cover was studied both in freshwater lake ice and in brackish sea ice (Papers II and III). Additionally, the seasonal evolution of light transmission through lake ice was investigated during spring. The crystal structure of the ice cover was analysed both in the coastal fast ice zone and in drift ice in the open Baltic Sea. The snow and ice cover was found not only to reduce the amount of light, but also to change its spectral and directional distribution. The light field under ice depended strongly on the snow cover. In addition, the bio-optical substances were analysed within sea ice and in the underlying water, as well as their effect on the light ...