Effects of re-oxygenation and bioturbation by the polychaete Marenzelleria arctia on phosphorus, iron and manganese dynamics in Baltic Sea sediments

Sediments underlying hypoxic or anoxic water bodies constitute a net source of phosphorus to the bottom water. This source has the potential to enhance eutrophication. Benthic fluxes of dissolved phosphorus, iron and manganese were measured from hypoxic, normoxic, and normoxic bioturbated by the inv...

Full description

Bibliographic Details
Main Authors: Danielsson, Åsa, Rahm, Lars, Brüchert, Volker, Bonaglia, Stefano, Raymond, Caroline, Svensson, Ola, Yekta, Sepehr Shakeri, Reyier, Henrik, Gunnarsson, Jonas S.
Format: Article in Journal/Newspaper
Language:English
Published: Stockholms universitet, Institutionen för geologiska vetenskaper 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-152832
Description
Summary:Sediments underlying hypoxic or anoxic water bodies constitute a net source of phosphorus to the bottom water. This source has the potential to enhance eutrophication. Benthic fluxes of dissolved phosphorus, iron and manganese were measured from hypoxic, normoxic, and normoxic bioturbated by the invasive polychaete Marenzelleria arctia sediment in a mesocosm experiment. The highest benthic phosphorus efflux was detected in mesocosms with the hypoxic treatment. Normoxic, bioturbated sediments led to weaker retention of phosphorus compared to oxic, defaunated sediments. Both iron and manganese fluxes increased under bioturbated conditions compared to defaunated sediments. This study shows that re-oxygenation of previously anoxic coastal sediments enhance phosphorus retention in the sediments. Colonisation by M. arctia induce strong mobilisation of iron and manganese due to its intense bioirrigation, which facilitates organic matter degradation and decreases the phosphorus retention by metal oxides in sediment.