Sediment transport from source to sink in the Lake Baikal basin : Impacts of hydroclimatic change and mining

Different magnitude, intensity and timing of precipitation can impact runoff, hillslope erosion and transport of sediment along river channels. Human activities, such as dam construction and surface mining can also considerably influence transport of sediment and sediment-bound contaminants. Many ri...

Full description

Bibliographic Details
Main Author: Pietroń, Jan
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Stockholms universitet, Institutionen för naturgeografi 2017
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-145442
Description
Summary:Different magnitude, intensity and timing of precipitation can impact runoff, hillslope erosion and transport of sediment along river channels. Human activities, such as dam construction and surface mining can also considerably influence transport of sediment and sediment-bound contaminants. Many river basins of the world are currently subject to changes in climate at the same time as pressures from other human activities increase. However, because there are often complex interactions between such multiple drivers of change, it is challenging to understand and quantify contributions of individual drivers, which is needed in predictive modelling of future sediment and contaminant flows. This thesis considers sediment transport in the Lake Baikal basin, which is hydrologically dominated by the transboundary Selenga River of Russia and Mongolia. The Selenga River basin is, for instance, subject to climate change and increasing pressures from mining, but process complexity is reduced by the fact that the river basin is one of few large basins in the world that still is essentially undammed and unregulated. A combination of field measurement campaigns and modelling methods are used in this thesis, with the aim to: (i) identify historical hydroclimatic trends and their possible causes, (ii) analyse the spatial variability of riverine sediment loading in the mining affected areas, and (iii) investigate sediment transport and storage processes within river channels and in river deltas. Results show that, during the period 1938-2009, the annual maximum daily flow in the Selenga River basin has decreased, as well as the annual number of high flow events, whereas the annual minimum daily flow has increased. These changes in discharge characteristics are consistent with expected impacts of basin-scale permafrost thaw. Both field observations and modelling results show that changes in magnitude and number of high-flow events can considerably influence the transport of bed sediment. In addition, the average discharge has ...