Single-click beam patterns suggest dynamic changes to the field of view of echolocating Atlantic Spotted Dolphins (Stenella frontalis) in the wild

The study was funded by frame grants from the Danish Natural Science Foundation to P.T.M. and M.W., and by the National Oceanographic Partnership Programme via a research agreement between La Laguna University (N.A.d.S.) and the Woods Hole Oceanographic Institution (M.J.). F.H.J. was supported by th...

Full description

Bibliographic Details
Published in:Journal of Experimental Biology
Main Authors: Jensen, Frants, Wahlberg, Magnus, Beedholm, Kristian, Johnson, Mark, Aguilar de Soto, Natacha, Madsen, Peter
Other Authors: European Commission, University of St Andrews. School of Biology, University of St Andrews. Marine Alliance for Science & Technology Scotland, University of St Andrews. Sea Mammal Research Unit, University of St Andrews. Sound Tags Group, University of St Andrews. Bioacoustics group, University of St Andrews. Centre for Research into Ecological & Environmental Modelling, University of St Andrews. Scottish Oceans Institute
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10023/8414
https://doi.org/10.1242/jeb.116285
http://jeb.biologists.org/content/218/9/1314.abstract
Description
Summary:The study was funded by frame grants from the Danish Natural Science Foundation to P.T.M. and M.W., and by the National Oceanographic Partnership Programme via a research agreement between La Laguna University (N.A.d.S.) and the Woods Hole Oceanographic Institution (M.J.). F.H.J. was supported by the Danish Council for Independent Research | Natural Sciences, and is currently funded by a postdoctoral fellowship from the Carlsberg Foundation Echolocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spatial relationship between an echolocating predator and its prey changes rapidly, resulting in different biosonar requirements throughout prey pursuit and capture. Here, we measured single-click beam patterns using a parametric fit procedure to test whether free-ranging Atlantic spotted dolphins (Stenella frontalis) modify their biosonar beam width. We recorded echolocation clicks using a linear array of receivers and estimated the beam width of individual clicks using a parametric spectral fit, cross-validated with well-established composite beam pattern estimates. The dolphins apparently increased the biosonar beam width, to a large degree without changing the signal frequency, when they approached the recording array. This is comparable to bats that also expand their field of view during prey capture, but achieve this by decreasing biosonar frequency. This behaviour may serve to decrease the risk that rapid escape movements of prey take them outside the biosonar beam of the predator. It is likely that shared sensory requirements have resulted in bats and toothed whales expanding their acoustic field of view at close range to increase the likelihood of successfully acquiring prey using ...