The deglaciation of the northwest sector of the last British-Irish ice sheet : integrating onshore and offshore data relating to chronology and behaviour

It is now accepted that the last British-Irish Ice Sheet (BIIS) was highly dynamic and drained by numerous fast flowing ice streams. This dynamic nature combined with its maritime location made the BIIS sensitive to the rapid climate change that characterised the Last Glacial Interglacial Transition...

Full description

Bibliographic Details
Main Author: Small, David
Other Authors: Rinterknecht, Vincent, Austin, W. E. N. (William E. N.), SAGES
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of St Andrews 2013
Subjects:
Online Access:http://hdl.handle.net/10023/3410
Description
Summary:It is now accepted that the last British-Irish Ice Sheet (BIIS) was highly dynamic and drained by numerous fast flowing ice streams. This dynamic nature combined with its maritime location made the BIIS sensitive to the rapid climate change that characterised the Last Glacial Interglacial Transition. Gaining an understanding of the behaviour of the BIIS at this time is important to explore the nature of forcing between ice sheets and climate. This thesis presents new chronological data relating to the deglaciation of the northwest sector of the BIIS (NW-BIIS) from onshore dating of moraines using cosmogenic exposure dating. This improved chronological framework is supported by offshore data in the form of a newly constructed Ice Rafted Detritus (IRD) record from the offshore sediment core MD95-2007. These data suggest that deglaciation commenced sometime after 18 ka and that the NW-BIIS was located close to the present day shoreline by 16 ka. Further provenance analysis of the IRD using U-Pb dating of detrital minerals demonstrates that during the Last Glacial-Interglacial Transition MD95-2007 was being supplied distal IRD from a source(s) to the west. The absence of diagnostic Scottish material suggests that after retreat to the coastline at 16 ka calving margins were not re-established during Greenland Interstadial 1. By combining these results with existing data relating to the deglaciation of the NW-BIIS it is possible to summarise the deglaciation history of the NW-BIIS from the continental shelf to mountainous source regions and compare this to numerical models of BIIS behaviour during this time. With a better understanding of the chronology of NW-BIIS retreat it is possible to relate the timing of initial deglaciation to possible forcing factors and gain a better understanding of the response of a marine based sector of an ice sheet to rapid climate change.