The genetic basis of flesh quality traits in farmed Atlantic salmon

The aim was to develop new methods for measuring texture of Atlantic salmon (Salmo salar L.) fillets and investigate the genetic basis of flesh quality traits. Firstly, a new tensile strength method was developed to quantify the force required to tear a standardized block of salmon muscle with the a...

Full description

Bibliographic Details
Main Author: Ashton, Thomas James
Other Authors: Johnston, Ian A., Biotechnology and Biological Sciences Research Council (BBSRC), Young's Seafood
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of St Andrews 2012
Subjects:
SNP
Online Access:http://hdl.handle.net/10023/3107
Description
Summary:The aim was to develop new methods for measuring texture of Atlantic salmon (Salmo salar L.) fillets and investigate the genetic basis of flesh quality traits. Firstly, a new tensile strength method was developed to quantify the force required to tear a standardized block of salmon muscle with the aim of identifying those samples more prone to factory downgrading as a result of gaping. The repeatability, sensitivity and predictability of the new technique was evaluated against other common instrumental texture measurement methods. Data from the new method were shown to have the strongest correlations with gaping severity r=-0.514, P<0.001) and the highest level of repeatability of data when analysing cold-smoked samples. The Warner Bratzler shear method gave the most repeatable data from fresh samples and had the highest correlations between fresh and smoked product from the same fish (r=0.811, P<0.001). It is therefore recommended that the new method be adopted for measuring gaping potential and the Warner Bratzler method become the standard for firmness assessment. Genes associated with post mortem softening in mammals were characterised in Atlantic salmon. A previously unknown ancient paralogue of calpastatin (here named CAST2) was identified. Evidence was provided for the existence of highly homologous recent paralogues of CAST2 and CTSD1. Evidence for the ancestral history of these paralogues was provided by phylogenetic analysis. Recent gene duplicates of 6 further genes were identified. In all cases, homology between recent paralogues was greater than 94%. Analysis of synonymous vs non-synonymous nucleotide substitution between the observed paralogue pairs shows a significant purifying selection in most cases. The CTSD1 gene shows significant purifying selection in a pairwise analysis between 12 teleost species (all cases P<0.0001) but a similar analysis of CTSD2 revealed no significant occurrence of purifying selection. The present study provides further support for the idea of asymmetrical ...