Physical conditions of fast glacier flow : 3. Seasonally-evolving ice deformation on Store Glacier, West Greenland

This research was funded by the University of Cambridge Fieldwork Funds, by UK National Environment Research Council grants NE/K006126 and NE/K0058871/1, and by an Aberystwyth University Capital Equipment grant to BH. Temporal variations in ice sheet flow directly impact the internal structure withi...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Earth Surface
Main Authors: Young, T. J., Christoffersen, P., Doyle, S. H., Nicholls, K. W., Stewart, C. L., Hubbard, B., Hubbard, A., Lok, L. B., Brennan, P., Benn, D. I., Luckman, A., Bougamont, M.
Other Authors: University of St Andrews.School of Geography & Sustainable Development, University of St Andrews.Bell-Edwards Geographic Data Institute
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
DAS
GE
Online Access:https://hdl.handle.net/10023/17480
https://doi.org/10.1029/2018JF004821
Description
Summary:This research was funded by the University of Cambridge Fieldwork Funds, by UK National Environment Research Council grants NE/K006126 and NE/K0058871/1, and by an Aberystwyth University Capital Equipment grant to BH. Temporal variations in ice sheet flow directly impact the internal structure within ice sheets through englacial deformation. Large‐scale changes in the vertical stratigraphy within ice sheets have been previously conducted on centennial to millennial timescales; however, intra‐annual changes in the morphology of internal layers have yet to be explored. Over a period of two years, we use autonomous phase‐sensitive radio‐echo sounding (ApRES) to track the daily displacement of internal layers on Store Glacier, West Greenland to millimeter accuracy. At a site located ∼30 km from the calving terminus, where the ice is ∼600m thick and flows at ∼700m a−1, we measure distinct seasonal variations in vertical velocities and vertical strain rates over a two‐year period. Prior to the melt season (March–June), we observe increasingly non‐linear englacial deformation with negative vertical strain rates (i.e. strain thinning) in the upper half of the ice column of ∼‐0.03a−1, whereas the ice below thickens under vertical strain reaching up to 0.16a−1. Early in the melt season (June–July), vertical thinning gradually ceases as the glacier increasingly thickens. During late summer to midwinter (August–February), vertical thickening occurs linearly throughout the entire ice column, with strain rates averaging 0.016a−1. We show that these complex variations are unrelated to topographic setting and localized basal slip, and hypothesize that this seasonality is driven by far‐field perturbations in the glacier's force balance, in this case generated by variations in basal hydrology near the glacier's terminus and propagated tens of kilometers upstream through longitudinal coupling. Peer reviewed