Arctic microbial community dynamics influenced by elevated CO2 levels

The Arctic Ocean ecosystem is particular vulnerable for ocean acidification (OA) related alterations due to the relatively high CO2 solubility and low carbonate saturation states of its cold surface waters. Thus far, however, there is only little known about the consequences of OA on the base of the...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Brussaard, C PD, Noordeloos, A AM, Witte, H, Collenteur, M CJ, Schulz, Kai G, Ludwig, A, Riebesell, U
Format: Article in Journal/Newspaper
Language:unknown
Published: ePublications@SCU 2012
Subjects:
Online Access:https://epubs.scu.edu.au/esm_pubs/1683
https://doi.org/10.5194/bg-10-719-2013
Description
Summary:The Arctic Ocean ecosystem is particular vulnerable for ocean acidification (OA) related alterations due to the relatively high CO2 solubility and low carbonate saturation states of its cold surface waters. Thus far, however, there is only little known about the consequences of OA on the base of the food web. In a mesocosm CO2-enrichment experiment (overall CO2 levels ranged from ∼180 to 1100 μatm) in the Kongsfjord off Svalbard, we studied the consequences of OA on a natural pelagic microbial community. The most prominent finding of our study is the profound effect of OA on the composition and growth of the Arctic phytoplankton community, i.e. the picoeukaryotic photoautotrophs and to a lesser extent the nanophytoplankton prospered. A shift towards the smallest phytoplankton as a result of OA will have direct consequences for the structure and functioning of the pelagic food web and thus for the biogeochemical cycles. Furthermore, the dominant pico- and nanophytoplankton groups were found prone to viral lysis, thereby shunting the carbon accumulation in living organisms into the dissolved pools of organic carbon and subsequently affecting the efficiency of the biological pump in these Arctic waters.