Evidence for a sedimentary fingerprint of an asymmetric flow field surrounding a short seamount

Physical oceanographic modeling and field studies have shown that kilometer-scale seafloor elevations of comparable breadth and width (abyssal hills, knolls, seamounts) are surrounded by complex flow fields. Asymmetric flow fields, reversed flow and closed streamlines around the topographic feature...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Turnewitsch, R., Reyss, J-L., Chapman, D.C., Thomson, J., Lampitt, R.S.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2004
Subjects:
Online Access:https://eprints.soton.ac.uk/9133/
Description
Summary:Physical oceanographic modeling and field studies have shown that kilometer-scale seafloor elevations of comparable breadth and width (abyssal hills, knolls, seamounts) are surrounded by complex flow fields. Asymmetric flow fields, reversed flow and closed streamlines around the topographic feature (Taylor caps), and resonantly amplified tidal currents around the seamount rim potentially control near-bottom particle dynamics, particle deposition at the seafloor and, consequently, the formation of the sedimentary record. We combine numerical modeling and field data to study how such topographically controlled flow-field features are reflected in the sedimentary record. Sediment deposition on a topographically isolated abyssal knoll (height: 900 m) on the Porcupine Abyssal Plain in the Northeast Atlantic (water depth above the abyssal plain: 4850 m) was studied, (1) by comparing the spatial distribution of 210Pb fluxes, calculated from inventories of sedimentary excess 210Pb, with 210Pb input from the water column as recorded by sediment traps; and (2) by comparing sedimentary grain-size distributions and Zr/Al ratios (an indicator for contents of the heavy mineral zircon) at slope, summit and far-field sites. Given Rossby numbers ?0.23, a fractional seamount height of ~0.2, and the absence of diurnal tides it is concluded that an asymmetric flow field without Taylor cap and without amplified tidal currents around the seamount rim is the principal flow-field feature at this knoll. The results and conclusions are as follows: (1) Geochemical and grain-size patterns in the sedimentary record largely agree with the predicted pattern of flow intensity around the topographic elevation: with increasing current strength (erosiveness) there is evidence for a growing discrepancy between water column-derived and sediment-derived 210Pb fluxes, and for increasing contents of larger and heavier particles. The topographically controlled flow field distorts a homogeneous particle-flux input signal from the ocean interior and ...