Summary: | Aim Beringia, far north-eastern Siberia and north-western North America, was largely unglaciated during the Pleistocene. Although this region has long been considered an ice-age refugium for arctic herbs and shrubs, little is known about its role as a refugium for boreal trees and shrubs during the last glacial maximum (LGM, c. 28,000–15,000 calibrated years before present). We examine mapped patterns of pollen percentages to infer whether six boreal tree and shrub taxa (Populus, Larix, Picea, Pinus, Betula, Alnus/Duschekia) survived the harsh glacial conditions within Beringia. Methods Extensive networks of pollen records have the potential to reveal distinctive temporal–spatial patterns that discriminate between local- and long-distance sources of pollen. We assembled pollen records for 149 lake, peat and alluvial sites from the Palaeoenvironmental Arctic Sciences database, plotting pollen percentages at 1000-year time intervals from 21,000 to 6000 calibrated years before present. Pollen percentages are interpreted with an understanding of modern pollen representation and potential sources of long-distance pollen during the glacial maximum. Inferences from pollen data are supplemented by published radiocarbon dates of identified macrofossils, where available. Results Pollen maps for individual taxa show unique temporal-spatial patterns, but the data for each taxon argue more strongly for survival within Beringia thanfor immigration from outside regions. The first increase of Populus pollen percentages in the western Brooks Ranges is evidence that Populus trees survived the LGM in central Beringia. Both pollen and macrofossil evidence support Larix survival in western Beringia (WB), but data for Larix in eastern Beringia (EB) are unclear. Given the similar distances of WB and EB to glacial-age boreal forests intemperate latitudes of Asia and North America, the widespread presence of Piceapollen in EB and Pinus pollen in WB indicates that Picea and Pinus survived within these respective regions. Betula pollen is ...
|