Evidence for distal transport of reworked Andean tephra: extending the cryptotephra framework from the Austral volcanic zone

Cryptotephra deposits (non-visible volcanic ash beds) may extend thousands of kilometres and provide valuable chronological isochrons. Here, we present a Lateglacial-early Holocene (c. 16,500 cal yr BP-6000 cal yr BP) tephrostratigraphy from Hooker's Point, East Falkland, South Atlantic. This p...

Full description

Bibliographic Details
Published in:Quaternary Geochronology
Main Authors: Monteath, A.J., Hughes, P.D.M., Wastegård, S.
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:https://eprints.soton.ac.uk/429210/
https://eprints.soton.ac.uk/429210/1/Falkland_s_tephra_Manuscript_Final_.pdf
Description
Summary:Cryptotephra deposits (non-visible volcanic ash beds) may extend thousands of kilometres and provide valuable chronological isochrons. Here, we present a Lateglacial-early Holocene (c. 16,500 cal yr BP-6000 cal yr BP) tephrostratigraphy from Hooker's Point, East Falkland, South Atlantic. This period spans the last glacial termination across the southern mid-latitudes, a time period during which the palaeoenvironmental record is poorly resolved in southern South America and the South Atlantic. The development of a regional tephrostratigraphy will provide chronological constraint for palaeoenvironmental records from this period. Two cryptotephra deposits from Hooker's Point are linked with Mt. Burney, including the early-Holocene MB 1 tephra, while a third is likely to be derived from the R 1 eruption of Reclus volcano. The high shard abundance of these cryptotephra deposits suggests they extend further into the Southern Ocean, and may act as regional stratigraphic markers during the Lateglacial. Further peaks in shard abundance are composed of detrital glass (tephra not derived from primary air fall events), with mixed shard morphologies and geochemically heterogeneous glass populations. This detrital glass is likely to have been repeatedly reworked by wind action in the Patagonian Steppe before final deposition in the Falkland Islands. The high abundance of detrital glass in the Hooker's Point sequence suggests long distance transport of reworked tephra is common in this region, and highlights the need to carefully analyse cryptotephra deposits in order to avoid incorrectly describing reworked tephra as new isochrons. A temporal pattern of shard abundance is apparent in the Hooker's Point sequence with a reduction/absence of shards between 14,300–10,500 cal yr BP.