The transport of Mediterranean water in the North Atlantic Ocean

Ocean circulation is a fundamental component of the Earth's climate system. The Atlantic thermohaline circulation, driven by deep convection at high latitudes, has a central role in regulating European climate through its transport and redistribution of heat. Either directly or indirectly, Medi...

Full description

Bibliographic Details
Main Author: Slater, Deborah
Format: Thesis
Language:English
Published: University of Southampton 2003
Subjects:
Online Access:https://eprints.soton.ac.uk/426647/
https://eprints.soton.ac.uk/426647/1/Slater.pdf
Description
Summary:Ocean circulation is a fundamental component of the Earth's climate system. The Atlantic thermohaline circulation, driven by deep convection at high latitudes, has a central role in regulating European climate through its transport and redistribution of heat. Either directly or indirectly, Mediterranean Water (MW) provides the high salinities found in the Nordic Seas which are required to precondition for deep convection. The precise mechanisms and pathways remain undetermined and yet are fundamental to understanding the effect that any change in the Mediterranean Outflow may have on circulation and ultimately on climate. This thesis investigates the transport of MW in the North Atlantic Ocean using hydrographic and model data. The primary objective is to quantify how much MW flows northwards and how much flows westwards from its source in the Gulf of Cadiz. Two boxes (Med Boxes) were constructed using hydrographic sections in the eastern North Atlantic enclosing the Strait of Gibraltar and Mediterranean Outflow. Inverse methods were used to determine the velocity field from which volume transports and salt fluxes were calculated. The main northward flow of MW across 41°N occurs east of 12°W, at depths of 500 to 1500 m, and transports 50 to 75% of the MW. An advective westward pathway across 20°W transports MW at similar depths into the ocean interior between 35°N and 40°N. Insignificant salt fluxes across the southern section (24°N) at MW depths confirm that no MW crosses the southern Med Box boundary. The net overturning circulation of the Med Box, with inflowing surface waters and outflowing intermediate waters, is attributed both to the exchange at the Strait of Gibraltar and also to water mass transformation associated with entrainment of North Atlantic Water into the Mediterranean Outflow. The magnitude of the circulation provides an estimate of this entrainment of 1.6 ± 0.6 Sv, within the Med Box boundaries. For comparison with these observational estimates, the model used is OCCAM, a level model from the ...