Reproductive success in Antarctic marine invertebrates

The nearshore Antarctic marine environment is unique, characterised by low but constant temperatures that contrast with an intense peak in productivity. As a result of this stenothermal environment, energy input has a profound ecological effect. These conditions have developed over several millions...

Full description

Bibliographic Details
Main Author: Grange, L.J.
Format: Thesis
Language:English
Published: 2005
Subjects:
Online Access:https://eprints.soton.ac.uk/41355/
https://eprints.soton.ac.uk/41355/1/Grange_2005_PhD.pdf
Description
Summary:The nearshore Antarctic marine environment is unique, characterised by low but constant temperatures that contrast with an intense peak in productivity. As a result of this stenothermal environment, energy input has a profound ecological effect. These conditions have developed over several millions of years and have resulted in an animal physiology that is highly stenothermal and sometimes closely coupled with the seasonal food supply, e.g. reproductive periodicity and food storage. Therefore, Antarctic marine animals are likely to be amongst the most vulnerable species worldwide to environmental modifications and can be regarded as highly sensitive barometers for change. Reproductive success is a vital characteristic in species survival and evaluation of change in reproductive condition with time key to identifying vulnerable taxa. Characterising reproductive success with time is a major requirement in predicting species response to change and the early stages of species loss. Some invertebrates are highly abundant in shallow water sites around the Antarctic and form conspicuous members of the Antarctic benthos. Three common echinoderms and one nemertean were sampled from sites adjacent to the British Antarctic Survey’s Rothera Research Station, Adelaide Island, on the West Antarctic Peninsula between 1997-2001. Reproductive patterns were determined by histological analyses of gonad tissue. This study provided further evidence for inter-annual variation in Antarctic gametogenic development, which appeared to be driven to some extent by trophic position and reliance on the seasonal phytoplankton bloom. The largest variation in reproductive condition was demonstrated for the detritivorous brittle star, Ophionotus victoriae. The seasonal tempos of this echinoderm have been attributed in part, to the seasonal sedimentation events common in the high Antarctic. The reproductive patterns in the scavenging starfish, Odontaster validus and the predatory nemertean, Parborlasia corrugatus showed less inter-annual ...