Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species

Coccolithophores, a diverse group of phytoplankton, make important contributions to pelagic calcite production and export, yet the comparative biogeochemical role of species other than the ubiquitous Emiliania huxleyi is poorly understood. The contribution of different coccolithophore species to tot...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Daniels, C.J., Sheward, R.M., Poulton, A.J.
Format: Article in Journal/Newspaper
Language:English
Published: 2014
Subjects:
Online Access:https://eprints.soton.ac.uk/372668/
https://eprints.soton.ac.uk/372668/1/bg-11-6915-2014.pdf
Description
Summary:Coccolithophores, a diverse group of phytoplankton, make important contributions to pelagic calcite production and export, yet the comparative biogeochemical role of species other than the ubiquitous Emiliania huxleyi is poorly understood. The contribution of different coccolithophore species to total calcite production is controlled by inter-species differences in cellular calcite, growth rate and relative abundance within a mixed community. In this study we examined the relative importance of E. huxleyi and two Coccolithus species in terms of daily calcite production. Culture experiments compared growth rates and cellular calcite content of E. huxleyi (Arctic and temperate strains), Coccolithus pelagicus (novel Arctic strain) and Coccolithus braarudii (temperate strain). Despite assumptions that E. huxleyi is a fast-growing species, growth rates between the three species were broadly comparable (0.16–0.85 d?1) under identical temperature and light conditions. Emiliania huxleyi grew only 12% faster on average than C. pelagicus, and 28% faster than C. braarudii. As the cellular calcite content of C. pelagicus and C. braarudii is typically 30–80 times greater than E. huxleyi, comparable growth rates suggest that Coccolithus species have the potential to be major calcite producers in mixed populations. To further explore these results we devised a simplistic model comparing daily calcite production from Coccolithus and E. huxleyi across a realistic range of relative abundances and a wide range of relative growth rates. Using the relative differences in growth rates from our culture studies, we found that C. pelagicus would be a larger source of calcite if abundances of E. huxleyi to C. pelagicus were below 34:1. Relative abundance data collected from North Atlantic field samples (spring and summer 2010) suggest that, with a relative growth rate of 88%, C. pelagicus dominated calcite production at 69% of the sites sampled. With a more extreme difference in growth rates, where C. pelagicus grows at 1/10th of the ...