Detecting Atlantic MOC changes in an ensemble of climate change simulations

Signal-to-noise patterns for the meridional overturning circulation (MOC) have been calculated for an ensemble of greenhouse scenario runs. The greenhouse-forced signal has been defined as the linear trend in ensemble-mean MOC, after year 2000. It consists of an overall decrease and shoaling of the...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Drijfhout, S.S., Hazeleger, W.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2007
Subjects:
Online Access:https://eprints.soton.ac.uk/349142/
Description
Summary:Signal-to-noise patterns for the meridional overturning circulation (MOC) have been calculated for an ensemble of greenhouse scenario runs. The greenhouse-forced signal has been defined as the linear trend in ensemble-mean MOC, after year 2000. It consists of an overall decrease and shoaling of the MOC, with maximum amplitudes of 10 Sv (Sv ? 106 m3 s?1) per century. In each member the internal variability is defined as the anomaly with respect to the ensemble-mean signal. The interannual variability of the MOC is dominated by a monopole with a maximum amplitude of 2 Sv at 40°N. This variability appears to be driven by the North Atlantic Oscillation (NAO), mainly through NAO-induced variations in the wind field. The signal-to-noise ratio was estimated for various time spans, all starting in 1950 or later. Different noise estimates were made, both with and without intra-annual variability, relevant for episodic and continuous monitoring, respectively, and with and without an estimate of the observational error. Detection of a greenhouse-forced MOC signal on the basis of episodic measurements is impossible before 2055. With continuous monitoring, detection becomes possible after 35 years of observation. The main motivation for calculating signal-to-noise ratios and detection times is their usefulness for local monitoring strategies and detection methods. The two-dimensional pattern of detection times of a MOC change supports the rationale for deploying a sustained monitoring array on at 26°N.