Response of the South Atlantic circulation to an abrupt collapse of the Atlantic meridional overturning circulation

The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1 Sv; 1 Sv = 106 m 3 s -1 ) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Laurian, Audine, Drijfhout, Sybren S.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2011
Subjects:
Online Access:https://eprints.soton.ac.uk/348362/
Description
Summary:The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1 Sv; 1 Sv = 106 m 3 s -1 ) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse.