The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system

This paper describes a new Sea surface temperature (SST) analysis that is produced with global coverage on a daily basis at the Met Office called the Operational SST and Sea Ice Analysis (OSTIA) system. OSTIA uses satellite SST data provided by international agencies via the Group for High Resolutio...

Full description

Bibliographic Details
Published in:Remote Sensing of Environment
Main Authors: Donlon, Craig J., Martin, Matthew, Stark, John, Roberts-Jones, Jonah, Fiedler, Emma, Wimmer, Werenfrid
Format: Article in Journal/Newspaper
Language:unknown
Published: 2012
Subjects:
Online Access:https://eprints.soton.ac.uk/208499/
Description
Summary:This paper describes a new Sea surface temperature (SST) analysis that is produced with global coverage on a daily basis at the Met Office called the Operational SST and Sea Ice Analysis (OSTIA) system. OSTIA uses satellite SST data provided by international agencies via the Group for High Resolution SST (GHRSST) Regional/Global Task Sharing (R/GTS) framework. GHRSST products include data from microwave and infrared satellite instruments with accompanying uncertainty estimates. The system also uses in situ SST data available over the Global Telecommunications System (GTS) and a sea-ice concentration product from the EUMETSAT Ocean and Sea Ice Satellite Applications Facility (OSI-SAF). The SST analysis is a multi-scale optimal interpolation that is designed for applications in numerical weather prediction and ocean forecasting systems. The background error covariance matrix is specified using ocean model data and the analysis uses correlation length scales of 10 km and 100 km. The OSTIA system produces a foundation SST estimate (SSTfnd, which is the SST free of diurnal variability) at an output grid resolution of 1/20° (~ 6 km) although the smallest analysis feature resolution is based on the correlation length scale of 10 km. All satellite SST data are adjusted for bias errors based on a combination of ENVISAT Advanced Along Track Scanning Radiometer (AATSR) SST data and in situ SST measurements from drifting buoys. Data are filtered (based on surface wind speed data) to remove diurnal variability and AATSR data are adjusted to represent the SST at the same depth as drifting buoy measurements (0.2–1 m) before bias adjustments are made. Global coverage outputs are provided each day in GHRSST L4 netCDF format. A variety of secondary products are also provided including weekly and monthly mean data sets. OSTIA products are continuously monitored and validation/verification activities demonstrate that SST products have zero mean bias and an accuracy of ~ 0.57 K compared to in situ measurements. OSTIA is now used ...