Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the Geomagnetic Polarity and Astronomical Time Scale

Planktonic foraminifera are widely utilized for the biostratigraphy of Cretaceous and Cenozoic marine sediments and are a fundamental component of Cenozoic chronostratigraphy. The recent enhancements in deep sea drilling recovery, multiple coring and high resolution sampling both offshore and onshor...

Full description

Bibliographic Details
Published in:Earth-Science Reviews
Main Authors: Wade, Bridget S., Pearson, Paul N., Berggren, William A., Pälike, Heiko
Format: Article in Journal/Newspaper
Language:English
Published: 2011
Subjects:
Online Access:https://eprints.soton.ac.uk/163949/
https://eprints.soton.ac.uk/163949/1/Wade_etal_2010_preprint.pdf
https://eprints.soton.ac.uk/163949/2/Wade_etal_ESR2011.pdf
Description
Summary:Planktonic foraminifera are widely utilized for the biostratigraphy of Cretaceous and Cenozoic marine sediments and are a fundamental component of Cenozoic chronostratigraphy. The recent enhancements in deep sea drilling recovery, multiple coring and high resolution sampling both offshore and onshore, has improved the planktonic foraminiferal calibrations to magnetostratigraphy and/or modified species ranges. This accumulated new information has allowed many of the planktonic foraminiferal bioevents of the Cenozoic to be revised and a reassessment of the planktonic foraminiferal calibrations. We incorporate these developments and amendments into the existing biostratigraphic zonal scheme. In this paper we present an amended low-latitude (tropical and subtropical) Cenozoic planktonic foraminiferal zonation. We compile 187 revised calibrations of planktonic foraminiferal bioevents from multiple sources for the Cenozoic and have incorporated these recalibrations into a revised Cenozoic planktonic foraminiferal biochronology. We review and synthesize these calibrations to both the geomagnetic polarity time scale (GPTS) of the Cenozoic and astronomical time scale (ATS) of the Neogene and late Paleogene. On the whole, these recalibrations are consistent with previous work; however, in some cases, they have led to major adjustments to the duration of biochrons. Recalibrations of the early middle Eocene first appearance datums of Globigerinatheka kugleri, Hantkenina singanoae, Guembelitrioides nuttalli and Turborotalia frontosa have resulted in large changes in the durations of Biochrons E7, E8 and E9. We have introduced (upper Oligocene) Zone O7 utilizing the biostratigraphic utility of 'Paragloborotalia' pseudokugleri. For the Neogene Period, major revisions are applied to the fohsellid lineage of the middle Miocene and we have modified the criteria for recognition of Zones M7, M8 and M9, with additional adjustments regarding the Globigerinatella lineage to Zones M2 and M3. The revised and recalibrated datums provide ...